OFFSET
1,1
COMMENTS
As the order of addition doesn't matter we can assume terms are in increasing order. - David A. Corneth, Aug 01 2020
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
FORMULA
a(n) = n + O(log n). - Charles R Greathouse IV, Sep 03 2014
EXAMPLE
From David A. Corneth, Aug 01 2020: (Start)
1608 is in the sequence as 1608 = 18^2 + 20^2 + 20^2 + 22^2.
2140 is in the sequence as 2140 = 21^2 + 21^2 + 23^2 + 27^2.
3298 is in the sequence as 3298 = 25^2 + 26^2 + 29^2 + 34^2. (End)
MATHEMATICA
q=16; lst={}; Do[Do[Do[Do[z=a^2+b^2+c^2+d^2; If[z<=(q^2)+3, AppendTo[lst, z]], {d, q}], {c, q}], {b, q}], {a, q}]; Union@lst (*Vladimir Joseph Stephan Orlovsky, Feb 07 2010 *)
PROG
(PARI) is(n)=my(k=if(n, n/4^valuation(n, 4), 2)); k!=2 && k!=6 && k!=14 && !setsearch([0, 1, 3, 5, 9, 11, 17, 29, 41], n) \\ Charles R Greathouse IV, Sep 03 2014
(Python)
limit = 10026 # 10000th term in b-file
from functools import lru_cache
nzs = [k*k for k in range(1, int(limit**.5)+2) if k*k + 3 <= limit]
nzss = set(nzs)
@lru_cache(maxsize=None)
def ok(n, m): return n in nzss if m == 1 else any(ok(n-s, m-1) for s in nzs)
print([n for n in range(4, limit+1) if ok(n, 4)]) # Michael S. Branicky, Apr 07 2021
(Python)
from itertools import count, islice
def A000414_gen(startvalue=0): # generator of terms >= startvalue
return filter(lambda n:not(n in {0, 1, 3, 5, 9, 11, 17, 29, 41} or n>>((~n&n-1).bit_length()&-2) in {2, 6, 14}), count(max(startvalue, 0)))
CROSSREFS
Cf. A000534 (complement).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
corrected 6/95
STATUS
approved