OFFSET
1,1
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Lars Blomberg, Table of n, a(n) for n = 1..184
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967) 689-694.
D. Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699.
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
FORMULA
a(n) = (2*n-1)! * [x^(2*n-1)] 2*sin(3*x) / (2*cos(4*x) - 1). - F. Chapoton, Oct 06 2020
a(n) = (2*n-1)!*[x^(2*n-1)](sec(6*x)*(sin(x) + sin(5*x))). - Peter Luschny, Nov 21 2021
MAPLE
egf := sec(6*x)*(sin(x) + sin(5*x)): ser := series(egf, x, 24):
seq((2*n-1)!*coeff(ser, x, 2*n-1), n = 1..12); # Peter Luschny, Nov 21 2021
MATHEMATICA
nmax = 15; km0 = 10; Clear[dd]; L[a_, s_, km_] := Sum[JacobiSymbol[-a, 2 k + 1]/(2 k + 1)^s, {k, 0, km}]; d[a_ /; a > 1, n_, km_] := (2 n - 1)! L[-a, 2 n, km] (2 a/Pi)^(2 n)/Sqrt[a] // Round; dd[km_] := dd[km] = Table[d[6, n, km], {n, 1, nmax}]; dd[km0]; dd[km = 2 km0]; While[dd[km] != dd[km/2, km = 2 km]]; A000411 = dd[km] (* Jean-François Alcover, Feb 08 2016 *)
PROG
(Sage)
t = PowerSeriesRing(QQ, 't', default_prec=24).gen()
f = 2 * sin(3 * t) / (2 * cos(4 * t) - 1)
f.egf_to_ogf().list()[1::2] # F. Chapoton, Oct 06 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(10)-a(12) from Lars Blomberg, Sep 07 2015
STATUS
approved