

A000320


Generalized tangent numbers d(5,n).
(Formerly M3722 N1521)


5



4, 272, 55744, 23750912, 17328937984, 19313964388352, 30527905292468224, 64955605537174126592, 179013508069217017790464, 620314831396713435870789632, 2639743384489464189324523208704, 13533573366345611477262311433961472, 82274260343572247169162187576069586944
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Lars Blomberg, Table of n, a(n) for n = 1..189
D. Shanks, Generalized Euler and class numbers. Math. Comp. 21 1967 663688.
D. Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689694; 22 (1968), 699. [Annotated scanned copy]


MATHEMATICA

nmax = 15; km0 = 10; Clear[dd]; L[a_, s_, km_] := Sum[JacobiSymbol[a, 2 k + 1]/(2k+1)^s, {k, 0, km}]; d[a_ /; a>1, n_, km_] := (2n1)! L[a, 2n, km] (2a/Pi)^(2n)/Sqrt[a] // Round; dd[km_] := dd[km] = Table[d[5, n, km], {n, 1, nmax}]; dd[km0]; dd[km = 2km0]; While[dd[km] != dd[km/2, km = 2 km]]; A000320 = dd[km] (* JeanFrançois Alcover, Feb 07 2016 *)


CROSSREFS

Cf. A000318.
Sequence in context: A119008 A108134 A221081 * A101758 A134786 A290225
Adjacent sequences: A000317 A000318 A000319 * A000321 A000322 A000323


KEYWORD

nonn


AUTHOR

N. J. A. Sloane


EXTENSIONS

Formula producing A000326, rather than this sequence, deleted by Sean A. Irvine, Sep 09 2010
a(10)a(13) from Lars Blomberg, Sep 07 2015


STATUS

approved



