|
|
A000320
|
|
Generalized tangent numbers d(5,n).
(Formerly M3722 N1521)
|
|
5
|
|
|
4, 272, 55744, 23750912, 17328937984, 19313964388352, 30527905292468224, 64955605537174126592, 179013508069217017790464, 620314831396713435870789632, 2639743384489464189324523208704, 13533573366345611477262311433961472, 82274260343572247169162187576069586944
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Lars Blomberg, Table of n, a(n) for n = 1..189
D. Shanks, Generalized Euler and class numbers. Math. Comp. 21 (1967) 689-694.
D. Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
|
|
MATHEMATICA
|
nmax = 15; km0 = 10; Clear[dd]; L[a_, s_, km_] := Sum[JacobiSymbol[-a, 2 k + 1]/(2k+1)^s, {k, 0, km}]; d[a_ /; a>1, n_, km_] := (2n-1)! L[-a, 2n, km] (2a/Pi)^(2n)/Sqrt[a] // Round; dd[km_] := dd[km] = Table[d[5, n, km], {n, 1, nmax}]; dd[km0]; dd[km = 2km0]; While[dd[km] != dd[km/2, km = 2 km]]; A000320 = dd[km] (* Jean-François Alcover, Feb 07 2016 *)
|
|
CROSSREFS
|
Cf. A000318.
Sequence in context: A108134 A221081 A340916 * A101758 A134786 A290225
Adjacent sequences: A000317 A000318 A000319 * A000321 A000322 A000323
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
Formula producing A000326, rather than this sequence, deleted by Sean A. Irvine, Sep 09 2010
a(10)-a(13) from Lars Blomberg, Sep 07 2015
|
|
STATUS
|
approved
|
|
|
|