login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003328
Numbers that are the sum of 5 positive cubes.
49
5, 12, 19, 26, 31, 33, 38, 40, 45, 52, 57, 59, 64, 68, 71, 75, 78, 82, 83, 89, 90, 94, 96, 97, 101, 108, 109, 115, 116, 120, 127, 129, 131, 134, 135, 136, 138, 143, 145, 146, 150, 152, 153, 155, 157, 162, 164, 169, 171, 172, 176, 181, 183, 188, 190, 192, 194, 195, 199
OFFSET
1,1
COMMENTS
As the order of addition doesn't matter we can assume terms are in increasing order. - David A. Corneth, Aug 01 2020
It seems only a finite number N of positive integers are not in this sequence, and thus a(n) = n - N for all sufficiently large n. Is it true that 2243453, last term of A048927, is sufficiently large in that sense? - M. F. Hasler, Jan 04 2023
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Eric Weisstein's World of Mathematics, Cubic Number.
EXAMPLE
From David A. Corneth, Aug 01 2020: (Start)
3084 is in the sequence as 3084 = 5^3 + 5^3 + 5^3 + 8^3 + 13^3.
4385 is in the sequence as 4385 = 4^3 + 4^3 + 9^3 + 11^3 + 13^3.
5426 is in the sequence as 5426 = 8^3 + 9^3 + 9^3 + 12^3 + 12^3. (End)
PROG
(PARI) select( {is_A003328(n, k=5, m=3, L=sqrtnint(abs(n-k+1), m))=if( n>k*L^m || n<k, 0, n<k*L^m, forstep(r=min(k-1, n\L^m), 0, -1, self()(n-r*L^m, k-r, m, L-1) && return(1)), 1)}, [1..200]) \\ M. F. Hasler, Aug 02 2020
A003328_upto(N, k=5, m=3)=[i|i<-[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, i)] \\ M. F. Hasler, Aug 02 2020
(Python)
from collections import Counter
from itertools import combinations_with_replacement as combs_w_rep
def aupto(lim):
s = filter(lambda x: x<=lim, (i**3 for i in range(1, int(lim**(1/3))+2)))
s2 = filter(lambda x: x<=lim, (sum(c) for c in combs_w_rep(s, 5)))
s2counts = Counter(s2)
return sorted(k for k in s2counts)
print(aupto(200)) # Michael S. Branicky, May 12 2021
CROSSREFS
Cf. A057906 (Complement)
Cf. A###### (x, y) = Numbers that are the sum of x nonzero y-th powers:
A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).
Sequence in context: A093084 A063614 A048928 * A048926 A047704 A043413
KEYWORD
nonn,easy
STATUS
approved