

A003379


Numbers that are the sum of 12 positive 7th powers.


40



12, 139, 266, 393, 520, 647, 774, 901, 1028, 1155, 1282, 1409, 1536, 2198, 2325, 2452, 2579, 2706, 2833, 2960, 3087, 3214, 3341, 3468, 3595, 4384, 4511, 4638, 4765, 4892, 5019, 5146, 5273, 5400, 5527, 5654, 6570, 6697, 6824, 6951, 7078, 7205, 7332, 7459, 7586, 7713
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

David A. Corneth, Table of n, a(n) for n = 1..10000


EXAMPLE

From David A. Corneth, Aug 03 2020: (Start)
367634 is in the sequence as 367634 = 3^7 + 4^7 + 4^7 + 4^7 + 4^7 + 4^7 + 4^7 + 4^7 + 4^7 + 5^7 + 5^7 + 5^7.
456545 is in the sequence as 456545 = 2^7 + 2^7 + 2^7 + 4^7 + 4^7 + 4^7 + 4^7 + 5^7 + 5^7 + 5^7 + 5^7 + 5^7.
755708 is in the sequence as 755708 = 1^7 + 2^7 + 2^7 + 3^7 + 3^7 + 3^7 + 4^7 + 4^7 + 5^7 + 5^7 + 6^7 + 6^7. (End)


PROG

(PARI) (A003379_upto(N, k=12, m=7)=[nn<[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, n)])(8000) \\ 2nd & 3rd optional arg allow to get other sequences of this group. See A003333 for alternate code.  M. F. Hasler, Aug 03 2020


CROSSREFS

Cf. A001015 (seventh powers).
Cf. A003369  A003378 (numbers that are the sum of 2, ..., 11 positive 7th powers); A003335, A003346, A003357, A003368, A003390, A004801, A004812, A004823 (numbers that are the sum of 12 positive 3rd, ..., 11th powers).
Sequence in context: A097167 A125469 A113366 * A281247 A124206 A061636
Adjacent sequences: A003376 A003377 A003378 * A003380 A003381 A003382


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane


EXTENSIONS

Offset corrected by David A. Corneth, Aug 03 2020


STATUS

approved



