login
A096018
Number of Pythagorean quadruples mod n; i.e., number of solutions to w^2 + x^2 + y^2 = z^2 mod n.
4
1, 8, 21, 64, 145, 168, 301, 512, 621, 1160, 1221, 1344, 2353, 2408, 3045, 4096, 5185, 4968, 6517, 9280, 6321, 9768, 11661, 10752, 18625, 18824, 16281, 19264, 25201, 24360, 28861, 32768, 25641, 41480, 43645, 39744, 51985, 52136, 49413, 74240
OFFSET
1,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..127 from R. J. Mathar, terms 128..2500 from Andrew Howroyd)
A. H. Hakami, Small zeros of quadratic congruences to a prime power modulus, PhD Thesis (2009), Lemma 4.4.
A. H. Hakami, Small primitive zeros of quadratic forms mod p^m, Raman. J. 38 (2015) 189-198, Lemma 2.1 for n=4, det Q=-1, omega_j(y')= p^(m-j)-p^(m-j-1).
László Tóth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, J. Int. Seq. 17 (2014), Article 14.11.6.
Eric Weisstein's World of Mathematics, Pythagorean Quadruple.
FORMULA
a(n) is multiplicative. For the powers of primes p, there are several cases. For p=2, we have a(2^e) = 2^(3e). For odd primes p with p==1 (mod 4), we have a(p^e) = p^(2*e-1)*(p^(e+1)+p^e-1). For odd primes p with p==3 (mod 4) and even e we have a(p^e) = p^(3*e) +(p-1)*p^(2*e-1)*(1-p^e)/(1+p). For odd primes p == 3 (mod 4) and odd e we have a(p^e) = p^(3*e) -(p-1)*p^(2*e-1)*(1+p^e)/(1+p). [Corrected Jun 24 2018, R. J. Mathar]
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = A334425 * A334426 /(A088539 * A243381) = 0.94532146880744347512... . - Amiram Eldar, Nov 21 2023
MAPLE
A096018 := proc(n)
a := 1;
for pe in ifactors(n)[2] do
p := op(1, pe) ;
e := op(2, pe) ;
if p = 2 then
a := a*p^(3*e) ;
elif modp(p, 4) = 1 then
a := a* p^(2*e-1)*(p^(e+1)+p^e-1) ;
else
if type(e, 'even') then
a := a* (p^(3*e)+(p-1)*p^(2*e-1)*(1-p^e)/(1+p)) ;
else
a := a* (p^(3*e)-(p-1)*p^(2*e-1)*(1+p^e)/(1+p)) ;
end if;
end if;
end do:
a ;
end proc:
seq(A096018(n), n=1..50) ; # R. J. Mathar, Jun 24 2018
MATHEMATICA
Table[cnt=0; Do[If[Mod[w^2+x^2+y^2-z^2, n]==0, cnt++ ], {w, 0, n-1}, {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 50}]
f[2, e_] := 2^(3*e); f[p_, e_] := If[Mod[p, 4] == 1, p^(2*e - 1)*(p^(e + 1) + p^e - 1), If[EvenQ[e], p^(3*e) + (p - 1)*p^(2*e - 1)*(1 - p^e)/(1 + p), p^(3*e) - (p - 1)*p^(2*e - 1)*(1 + p^e)/(1 + p)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 11 2020 *)
PROG
(PARI)
M(n, f)={sum(i=0, n-1, Mod(x^(f(i)%n), x^n-1))}
a(n)={polcoeff(lift(M(n, i->i^2)^3 * M(n, i->-(i^2))), 0)} \\ Andrew Howroyd, Jun 23 2018
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; if(p == 2, 2^(3*e), if(p%4 == 1, p^(2*e-1)*(p^(e+1) + p^e - 1), if(e%2, p^(3*e) - (p - 1)*p^(2*e - 1)*(1 + p^e)/(1 + p), p^(3*e) + (p - 1)*p^(2*e - 1)*(1 - p^e)/(1 + p))))); } \\ Amiram Eldar, Nov 21 2023
CROSSREFS
Cf. A062775 (number of solutions to x^2 + y^2 = z^2 mod n), A240547.
Sequence in context: A192299 A080144 A241522 * A297647 A267144 A240516
KEYWORD
mult,nonn,easy
AUTHOR
T. D. Noe, Jun 15 2004
STATUS
approved