login
A080144
a(n) = F(4)*F(n)*F(n+1) + F(5)*F(n+1)^2 if n odd, a(n) = F(4)*F(n)*F(n+1) + F(5)*F(n+1)^2 - F(5) if n even, where F(n) is the n-th Fibonacci number (A000045).
10
0, 8, 21, 63, 165, 440, 1152, 3024, 7917, 20735, 54285, 142128, 372096, 974168, 2550405, 6677055, 17480757, 45765224, 119814912, 313679520, 821223645, 2149991423, 5628750621, 14736260448, 38580030720, 101003831720
OFFSET
0,2
COMMENTS
The present sequence is a member of the m-family of sums b(m,n) := Sum_{k=1..n} F(k+m)*F(k) for m >= 0, n >= 0 (see the B. Cloitre formula given below (m=5)). These sums are (F(m)*A027941(n) + L(m)*A001654(n))/2, with F = A000045 and the L = A000032. Proof by induction on m using the recurrence. - Wolfdieter Lang, Jul 27 2012
The o.g.f. of b(m,n) is A(m,x) = x*(F(m+1) - F(m-1)*x)/((1-x^2)*(1-3*x+x^2)), m >= 0, with F(-1)=1. - Wolfdieter Lang, Jul 30 2012
b(m,n) = ((-1)^(n+1)*L(m) - 5*F(m) + 2*L(m + 2*n + 1))/10. - Ehren Metcalfe, Aug 21 2017
LINKS
S. Falcon, On the Sequences of Products of Two k-Fibonacci Numbers, American Review of Mathematics and Statistics, March 2014, Vol. 2, No. 1, pp. 111-120.
FORMULA
G.f.: x*(8-3*x)/((1-x^2)*(1-3*x+x^2)) (see the comment section). - Wolfdieter Lang, Jul 30 2012
a(n) = Sum_{i=0..n} A000045(i+5)*A000045(i). - Benoit Cloitre, Jun 14 2004
a(n) = (5*A027941(n) + 11*A001654(n))/2, n >= 0. See A080143 and A080097. See the comment section for the general formula for such sums. - Wolfdieter Lang, Jul 27 2012
a(n) = (2*Lucas(2*n + 6) + 11*(-1)^(n+1) - 25)/10. - Ehren Metcalfe, Aug 21 2017
a(n) = (2*Fibonacci(n+3)^2 - 5 - 3*(-1)^n)/2. - G. C. Greubel, Jul 23 2019
MATHEMATICA
CoefficientList[Series[x*(8+5*x-3*x^2)/((1-x^2)*(1-2x-2x^2+x^3)), {x, 0, 30}], x]
With[{F=Fibonacci}, Table[(2*F[n + 3]^2 -5-3*(-1)^n)/2, {n, 0, 30}]] (* G. C. Greubel, Jul 23 2019 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0], Vec(x*(8-3*x)/((1-x^2)*(1-3*x+x^2)) )) \\ G. C. Greubel, Mar 04 2017
(PARI) vector(30, n, n--; f=fibonacci; (2*f(n+3)^2 -5-3*(-1)^n)/2) \\ G. C. Greubel, Jul 23 2019
(Magma) F:=Fibonacci; [(2*F(n+3)^2 -5-3*(-1)^n)/2: n in [0..30]]; // G. C. Greubel, Jul 23 2019
(Sage) f=fibonacci; [(2*f(n+3)^2 -5-3*(-1)^n)/2 for n in (0..30)] # G. C. Greubel, Jul 23 2019
(GAP) F:=Fibonacci;; List([0..30], n-> (2*F(n+3)^2 -5-3*(-1)^n)/2); # G. C. Greubel, Jul 23 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Jan 31 2003
STATUS
approved