The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080144 a(n) = F(4)*F(n)*F(n+1) + F(5)*F(n+1)^2 if n odd, a(n) = F(4)*F(n)*F(n+1) + F(5)*F(n+1)^2 - F(5) if n even, where F(n) is the n-th Fibonacci number (A000045). 10
 0, 8, 21, 63, 165, 440, 1152, 3024, 7917, 20735, 54285, 142128, 372096, 974168, 2550405, 6677055, 17480757, 45765224, 119814912, 313679520, 821223645, 2149991423, 5628750621, 14736260448, 38580030720, 101003831720 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The present sequence is a member of the m-family of sums b(m,n) := Sum_{k=1..n} F(k+m)*F(k) for m >= 0, n >= 0 (see the B. Cloitre formula given below (m=5)). These sums are (F(m)*A027941(n) + L(m)*A001654(n))/2, with F = A000045 and the L = A000032. Proof by induction on m using the recurrence. - Wolfdieter Lang, Jul 27 2012 The o.g.f. of b(m,n) is A(m,x) = x*(F(m+1) - F(m-1)*x)/((1-x^2)*(1-3*x+x^2)), m >= 0, with F(-1)=1. - Wolfdieter Lang, Jul 30 2012 b(m,n) = ((-1)^(n+1)*L(m) - 5*F(m) + 2*L(m + 2*n + 1))/10. - Ehren Metcalfe, Aug 21 2017 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 S. Falcon, On the Sequences of Products of Two k-Fibonacci Numbers, American Review of Mathematics and Statistics, March 2014, Vol. 2, No. 1, pp. 111-120. FORMULA G.f.: x*(8-3*x)/((1-x^2)*(1-3*x+x^2)) (see the comment section). - Wolfdieter Lang, Jul 30 2012 a(n) = Sum_{i=0..n} A000045(i+5)*A000045(i). - Benoit Cloitre, Jun 14 2004 a(n) = (5*A027941(n) + 11*A001654(n))/2, n >= 0. See A080143 and A080097. See the comment section for the general formula for such sums. - Wolfdieter Lang, Jul 27 2012 a(n) = (2*Lucas(2*n + 6) + 11*(-1)^(n+1) - 25)/10. - Ehren Metcalfe, Aug 21 2017 a(n) = (2*Fibonacci(n+3)^2 - 5 - 3*(-1)^n)/2. - G. C. Greubel, Jul 23 2019 MATHEMATICA CoefficientList[Series[x*(8+5*x-3*x^2)/((1-x^2)*(1-2x-2x^2+x^3)), {x, 0, 30}], x] With[{F=Fibonacci}, Table[(2*F[n + 3]^2 -5-3*(-1)^n)/2, {n, 0, 30}]] (* G. C. Greubel, Jul 23 2019 *) PROG (PARI) my(x='x+O('x^30)); concat([0], Vec(x*(8-3*x)/((1-x^2)*(1-3*x+x^2)) )) \\ G. C. Greubel, Mar 04 2017 (PARI) vector(30, n, n--; f=fibonacci; (2*f(n+3)^2 -5-3*(-1)^n)/2) \\ G. C. Greubel, Jul 23 2019 (MAGMA) F:=Fibonacci; [(2*F(n+3)^2 -5-3*(-1)^n)/2: n in [0..30]]; // G. C. Greubel, Jul 23 2019 (Sage) f=fibonacci; [(2*f(n+3)^2 -5-3*(-1)^n)/2 for n in (0..30)] # G. C. Greubel, Jul 23 2019 (GAP) F:=Fibonacci;; List([0..30], n-> (2*F(n+3)^2 -5-3*(-1)^n)/2); # G. C. Greubel, Jul 23 2019 CROSSREFS Cf. A000032, A000045, A059840, A064831, A080143. Sequence in context: A296198 A301538 A192299 * A241522 A096018 A297647 Adjacent sequences:  A080141 A080142 A080143 * A080145 A080146 A080147 KEYWORD nonn,easy AUTHOR Mario Catalani (mario.catalani(AT)unito.it), Jan 31 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 7 13:36 EDT 2020. Contains 333305 sequences. (Running on oeis4.)