login
A062775
Number of Pythagorean triples mod n: total number of solutions to x^2 + y^2 = z^2 mod n.
16
1, 4, 9, 24, 25, 36, 49, 96, 99, 100, 121, 216, 169, 196, 225, 448, 289, 396, 361, 600, 441, 484, 529, 864, 725, 676, 891, 1176, 841, 900, 961, 1792, 1089, 1156, 1225, 2376, 1369, 1444, 1521, 2400, 1681, 1764, 1849, 2904, 2475, 2116, 2209, 4032, 2695, 2900
OFFSET
1,2
COMMENTS
a(n) is multiplicative and, for a prime p, a(p) = p^2. Hence a(n) = n^2 if n is squarefree.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe, terms 1001..5000 from Seiichi Manyama)
Gottfried Helms, Pythagorean triples mod n / Solution enhanced, newsgroup sci.math.research, 2003.
László Tóth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, J. Int. Seq. 17 (2014), Article 14.11.6.
FORMULA
a(n) is multiplicative. For the powers of primes p, there are four cases. For p=2, there are cases for even and odd powers: a(2^(2k-1)) = 2^(3k-1) (2^k-1) and a(2^(2k)) = 2^(3k) (2^(k+1)-1). Similarly, for odd primes p, a(p^(2k-1)) = p^(3k-2) (p^k+p^(k-1)-1) and a(p^(2k)) = p^(3k-1) (p^(k+1)+p^k-1). - T. D. Noe, Dec 22 2003
From Gottfried Helms, May 13 2004: (Start)
If the canonical form of n is n = 2^i * 3^j * 5^k *... * p^q, then it appears that a(n) = n * f(2, i) * f(3, j) * f(5, k) * ... * f(p, q), where f(p, 1) = p for any prime p; f(2, i) = 2^i + 2^i - 2^ceiling(i/2); f(p, i) = p^i + p^(i-1) - p^floor((i-1)/2) for any odd prime p.
For example, a(7) = 49 because a(7) = 7*f(7, 1) = 7*7; a(16) = 448 because a(16) = a(2^4) = 16 * f(2, 4) = 16 * (16+16-4) = 16*28 = 448; a(12) = 216 because a(12) = a(3*2^2) = 12*f(2, 2)*f(3, 1) = 12*(4+4-2)*3 = 216. (End)
Sum_{k=1..n} a(k) ~ c * n^3, where c = (16/45) * Product_{p prime} (1 + 1/(p^3 + p^2 + p)) = (16/45)*zeta(3)/zeta(4) = 0.39488943478263044166... . - Amiram Eldar, Oct 18 2022, Nov 30 2023
MAPLE
A062775 := proc(n)
a := 1;
for pe in ifactors(n)[2] do
p := op(1, pe) ;
e := op(2, pe) ;
if p = 2 then
if type(e, 'odd') then
a := a*p^((3*e+1)/2)*(2^((e+1)/2)-1) ;
else
a := a*p^(3*e/2)*(2^(e/2+1)-1) ;
end if;
else
if type(e, 'odd') then
a := a*p^((3*e-1)/2)*(p^((e+1)/2)+p^((e-1)/2)-1) ;
else
a := a*p^(3*e/2-1)*(p^(e/2+1)+p^(e/2)-1) ;
end if;
end if;
end do:
a ;
end proc:
seq(A062775(n), n=1..100) ; # R. J. Mathar, Jun 25 2018
MATHEMATICA
Table[cnt=0; Do[If[Mod[x^2+y^2-z^2, n]==0, cnt++ ], {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 50}]
f[p_, e_] := If[OddQ[e], p^(3*(e+1)/2 - 2)*(p^((e+1)/2) + p^((e-1)/2) - 1), p^(3*e/2 - 1) * (p^(e/2 + 1) + p^(e/2) - 1)]; f[2, e_] := If[OddQ[e], 2^(3*(e+1)/2 - 1)*(2^((e+1)/2) - 1), 2^(3*e/2)*(2^(e/2+1)-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Oct 18 2022 *)
CROSSREFS
Cf. A091143 (number of solutions to x^2 + y^2 = z^2 mod 2^n).
Number of solutions to x^k + y^k = z^k mod n: this sequence (k=2), A063454 (k=3), A288099 (k=4), A288100 (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10).
Sequence in context: A270685 A272252 A067801 * A288105 A288101 A320913
KEYWORD
nonn,nice,mult
AUTHOR
Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 18 2001
EXTENSIONS
More terms from Sascha Kurz, Mar 25 2002
STATUS
approved