login
A288100
Number of solutions to x^5 + y^5 = z^5 mod n.
9
1, 4, 9, 20, 25, 36, 49, 112, 99, 100, 151, 180, 169, 196, 225, 704, 289, 396, 361, 500, 441, 604, 529, 1008, 1625, 676, 1377, 980, 841, 900, 1951, 4864, 1359, 1156, 1225, 1980, 1369, 1444, 1521, 2800, 601, 1764, 1849, 3020, 2475, 2116, 2209, 6336, 2695, 6500, 2601
OFFSET
1,2
COMMENTS
Equivalently, the number of solutions to x^5 + y^5 + z^5 == 0 (mod n). - Andrew Howroyd, Jul 17 2018
LINKS
PROG
(PARI) a(n)={my(p=Mod(sum(i=0, n-1, x^lift(Mod(i, n)^5)), 1-x^n)); polcoeff(lift(p^3), 0)} \\ Andrew Howroyd, Jul 17 2018
CROSSREFS
Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), A063454 (k=3), A288099 (k=4), this sequence (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10).
Sequence in context: A351600 A115075 A288102 * A063454 A288104 A053807
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, Jun 05 2017
EXTENSIONS
Keyword:mult added by Andrew Howroyd, Jul 17 2018
STATUS
approved