This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A063454 Number of solutions to x^3 + y^3 = z^3 mod n. 12
 1, 4, 9, 20, 25, 36, 55, 112, 189, 100, 121, 180, 109, 220, 225, 448, 289, 756, 487, 500, 495, 484, 529, 1008, 725, 436, 2187, 1100, 841, 900, 1081, 2048, 1089, 1156, 1375, 3780, 973, 1948, 981, 2800, 1681, 1980, 1513, 2420, 4725, 2116, 2209, 4032 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Equivalently, the number of solutions to x^3 + y^3 + z^3 == 0 (mod n). - Andrew Howroyd, Jul 18 2018 LINKS Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms n = 1..1000 from Seiichi Manyama) PROG (PARI) a(n)={my(p=Mod(sum(i=0, n-1, x^(i^3%n)), 1-x^n)); polcoeff(lift(p^3), 0)} \\ Andrew Howroyd, Jul 18 2018 (Python) def A063454(n):     ndict = {}     for i in range(n):         m = pow(i, 3, n)         if m in ndict:             ndict[m] += 1         else:             ndict[m] = 1     count = 0     for i in ndict:         ni = ndict[i]         for j in ndict:             k = (i+j) % n             if k in ndict:                 count += ni*ndict[j]*ndict[k]     return count # Chai Wah Wu, Jun 06 2017 CROSSREFS Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), this sequence (k=3), A288099 (k=4), A288100 (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10). Sequence in context: A115075 A288102 A288100 * A288104 A053807 A066109 Adjacent sequences:  A063451 A063452 A063453 * A063455 A063456 A063457 KEYWORD nonn,mult AUTHOR Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 25 2001 EXTENSIONS More terms from Dean Hickerson, Jul 26, 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 03:52 EST 2018. Contains 318141 sequences. (Running on oeis4.)