login
A096021
Greatest number, not divisible by 4, having exactly n partitions into three distinct positive squares.
0
1507, 4323, 5947, 10707, 19723, 30067, 34483, 47107, 58843, 77683, 111763, 106723, 126043, 166147, 164803, 222643, 217627, 232243, 289963, 319243, 300787, 319867, 462883, 393187, 546067, 532123, 502483, 615883, 662803, 606643
OFFSET
1,1
COMMENTS
These are conjectured values. The Mathematica program checks numbers up to 10^6.
MATHEMATICA
lim=1000; nLst=Table[0, {lim^2}]; Do[n=a^2+b^2+c^2; If[n>0 && n<lim^2, nLst[[n]]++ ], {a, lim}, {b, a+1, Sqrt[lim^2-a^2]}, {c, b+1, Sqrt[lim^2-a^2-b^2]}]; Table[Last[Select[Flatten[Position[nLst, k]], Mod[ #, 4]>0&]], {k, 30}]
CROSSREFS
Cf. A025415 (least sum of 3 distinct nonzero squares in exactly n ways).
Sequence in context: A092725 A097034 A059464 * A190032 A237319 A281569
KEYWORD
nonn
AUTHOR
T. D. Noe, Jun 15 2004
STATUS
approved