login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000419 Numbers that are the sum of 3 but no fewer nonzero squares. 11
3, 6, 11, 12, 14, 19, 21, 22, 24, 27, 30, 33, 35, 38, 42, 43, 44, 46, 48, 51, 54, 56, 57, 59, 62, 66, 67, 69, 70, 75, 76, 77, 78, 83, 84, 86, 88, 91, 93, 94, 96, 99, 102, 105, 107, 108, 110, 114, 115, 118, 120, 123, 126, 129, 131, 132, 133, 134, 138, 139, 140, 141, 142 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A002828(a(n)) = 3; A025427(a(n)) > 0. - Reinhard Zumkeller, Feb 26 2015

REFERENCES

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 311.

LINKS

Ray Chandler, Table of n, a(n) for n = 1..10000

Eric Weisstein's World of Mathematics, Square Number.

Index entries for sequences related to sums of squares

FORMULA

Legendre: a nonnegative integer is a sum of three (or fewer) squares iff it is not of the form 4^k m with m == 7 (mod 8).

MATHEMATICA

Select[Range[150], SquaresR[3, #]>0&&SquaresR[2, #]==0&] (* Harvey P. Dale, Nov 01 2011 *)

PROG

(Haskell)

a000419 n = a000419_list !! (n-1)

a000419_list = filter ((== 3) . a002828) [1..]

-- Reinhard Zumkeller, Feb 26 2015

(PARI) is(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]%2 && f[i, 1]%4==3, return( n/4^valuation(n, 4)%8 !=7 ))); 0 \\ Charles R Greathouse IV, Feb 07 2017

(Python)

def aupto(lim):

  squares = [k*k for k in range(1, int(lim**.5)+2) if k*k <= lim]

  sum2sqs = set(a+b for i, a in enumerate(squares) for b in squares[i:])

  sum3sqs = set(a+b for a in sum2sqs for b in squares)

  return sorted(set(range(lim+1)) & (sum3sqs - sum2sqs - set(squares)))

print(aupto(142)) # Michael S. Branicky, Mar 06 2021

CROSSREFS

Cf. A000378, A000408, A000415, A002828, A004215, A025427.

Sequence in context: A022155 A066157 A073159 * A353716 A178890 A332933

Adjacent sequences:  A000416 A000417 A000418 * A000420 A000421 A000422

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane and J. H. Conway

EXTENSIONS

More terms from Arlin Anderson (starship1(AT)gmail.com)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 05:48 EST 2022. Contains 358353 sequences. (Running on oeis4.)