login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000419
Numbers that are the sum of 3 but no fewer nonzero squares.
11
3, 6, 11, 12, 14, 19, 21, 22, 24, 27, 30, 33, 35, 38, 42, 43, 44, 46, 48, 51, 54, 56, 57, 59, 62, 66, 67, 69, 70, 75, 76, 77, 78, 83, 84, 86, 88, 91, 93, 94, 96, 99, 102, 105, 107, 108, 110, 114, 115, 118, 120, 123, 126, 129, 131, 132, 133, 134, 138, 139, 140, 141, 142
OFFSET
1,1
COMMENTS
A002828(a(n)) = 3; A025427(a(n)) > 0. - Reinhard Zumkeller, Feb 26 2015
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 311.
FORMULA
Legendre: a nonnegative integer is a sum of three (or fewer) squares iff it is not of the form 4^k m with m == 7 (mod 8).
MATHEMATICA
Select[Range[150], SquaresR[3, #]>0&&SquaresR[2, #]==0&] (* Harvey P. Dale, Nov 01 2011 *)
PROG
(Haskell)
a000419 n = a000419_list !! (n-1)
a000419_list = filter ((== 3) . a002828) [1..]
-- Reinhard Zumkeller, Feb 26 2015
(PARI) is(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]%2 && f[i, 1]%4==3, return( n/4^valuation(n, 4)%8 !=7 ))); 0 \\ Charles R Greathouse IV, Feb 07 2017
(Python)
def aupto(lim):
squares = [k*k for k in range(1, int(lim**.5)+2) if k*k <= lim]
sum2sqs = set(a+b for i, a in enumerate(squares) for b in squares[i:])
sum3sqs = set(a+b for a in sum2sqs for b in squares)
return sorted(set(range(lim+1)) & (sum3sqs - sum2sqs - set(squares)))
print(aupto(142)) # Michael S. Branicky, Mar 06 2021
CROSSREFS
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Arlin Anderson (starship1(AT)gmail.com)
STATUS
approved