login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A025427 Number of partitions of n into 3 nonzero squares. 14
0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 2, 0, 1, 1, 0, 0, 2, 1, 1, 1, 0, 2, 0, 0, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 0, 1, 3, 0, 1, 2, 0, 2, 0, 1, 2, 0, 0, 1, 3, 1, 1, 2, 1, 0, 1, 1, 2, 2, 1, 2, 1, 0, 0, 3, 1, 2, 1, 0, 3, 0, 1, 3, 2, 1, 0, 1, 2, 0, 1, 1, 2, 3, 0, 3, 2, 0, 1, 2, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,28

COMMENTS

The non-vanishing values a(n) give the multiplicities for the numbers n appearing in A000408. See also A024795 where these numbers n are listed a(n) times. For the primitive case see A223730 and A223731. - Wolfdieter Lang, Apr 03 2013

LINKS

R. J. Mathar and R. Zumkeller, Table of n, a(n) for n = 0..10000, first 5592 terms by R. J. Mathar

Index to sequences related to sums of squares and cubes.

FORMULA

a(A004214(n) = 0; a(A000408(n) > 0; a(A025414(n)) = n and a(m) != n for m < A025414(n). - Reinhard Zumkeller, Feb 26 2015

a(4n) = a(n). This is because if a number divisible by 4 is the sum of three squares, each of those squares must be even. - Robert Israel, Mar 09 2016

EXAMPLE

a(27) = 2 because  1^2 + 1^2 + 5^2 = 27  = 3^2 + 3^2 + 3^2. The second representation is not primitive (gcd(3,3,3) = 3 not 1).

MAPLE

A025427 := proc(n)

    local a, x, y, zsq ;

    a := 0 ;

    for x from 1 do

        if 3*x^2 > n then

            return a;

        end if;

        for y from x do

            if x+2*y^2 > n then

                break;

            end if;

            zsq := n-x^2-y^2 ;

            if issqr(zsq) then

                a := a+1 ;

            end if;

        end do:

    end do:

end proc: # R. J. Mathar, Sep 15 2015

PROG

(Haskell)

a025427 n = sum $ map f zs where

   f x = sum $ map (a010052 . (n - x -)) $

                   takeWhile (<= div (n - x) 2) $ dropWhile (< x) zs

   zs = takeWhile (< n) $ tail a000290_list

-- Reinhard Zumkeller, Feb 26 2015

CROSSREFS

Cf. A000408, A024795, A223730 (multiplicities for the primitive case). - Wolfdieter Lang, Apr 03 2013

Column k=3 of A243148.

Cf. A000290, A010052, A004214, A025321, A025414, A025426.

Sequence in context: A089233 A066620 A219023 * A245963 A291375 A033778

Adjacent sequences:  A025424 A025425 A025426 * A025428 A025429 A025430

KEYWORD

nonn

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified October 22 02:06 EDT 2017. Contains 293756 sequences.