

A007691


Multiplyperfect numbers: n divides sigma(n).
(Formerly M4182)


154



1, 6, 28, 120, 496, 672, 8128, 30240, 32760, 523776, 2178540, 23569920, 33550336, 45532800, 142990848, 459818240, 1379454720, 1476304896, 8589869056, 14182439040, 31998395520, 43861478400, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

sigma(n)/n is in A054030.
Also numbers such that the sum of the reciprocals of the divisors is an integer.  Harvey P. Dale, Jul 24 2001
Luca's solution of problem 11090, which proves that for k>1 there are an infinite number of n such that n divides sigma_k(n), does not apply to this sequence. However, it is conjectured that this sequence is also infinite.  T. D. Noe, Nov 04 2007
Also numbers n such that A007955(n)/A000203(n) is an integer.  Ctibor O. Zizka, Jan 12 2009
Numbers k such that sigma(k) is divisible by all divisors of k, subsequence of A166070.  Jaroslav Krizek, Oct 06 2009
A017666(a(n)) = 1.  Reinhard Zumkeller, Apr 06 2012
Bach, Miller, & Shallit show that this sequence can be recognized in polynomial time with arbitrarily small error by a probabilistic Turing machine; that is, this sequence is in BPP.  Charles R Greathouse IV, Jun 21 2013
Conjecture: If n is such that 2^n1 is in A066175 then a(n) is a triangular number.  Ivan N. Ianakiev, Aug 26 2013
Conjecture: Every multiplyperfect number is practical (A005153). I've verified this conjecture for the first 5261 terms with abundancy > 2 using Achim Flammenkamp's data. The even perfect numbers are easily shown to be practical, but every practical number > 1 is even, so a weak form says every even multiplyperfect number is practical.  Jaycob Coleman, Oct 15 2013
Numbers such that A054024(n) = 0.  Michel Marcus, Nov 16 2013
Numbers n such that k(n) = A229110(n) = antisigma(n) mod n = A024816(n) mod n = A000217(n) mod n = (n(n+1)/2) mod n = A142150(n). k(n) = n/2 for even n; k(n) = 0 for odd n (for number 1 and eventually odd multiplyperfect numbers n > 1).  Jaroslav Krizek, May 28 2014


REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 22.
J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 176.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chapter 15, pp. 8288, BelinPour La Science, Paris 2000.
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 1356, Penguin Books 1987.


LINKS

T. D. Noe, Table of n, a(n) for n=1..1600 (using Flammenkamp's data)
Abiodun E. Adeyemi, A Study of @numbers, arXiv:1906.05798 [math.NT], 2019.
Anonymous, Multiply Perfect Numbers [broken link]
Eric Bach, Gary Miller, and Jeffrey Shallit, Sums of divisors perfect numbers and factoring, SIAM J. Comput. 15:4 (1986), pp. 11431154.
R. D. Carmichael, A table of multiply perfect numbers, Bull. Amer. Math. Soc. 13 (1907), 383386.
F. Firoozbakht, M. F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
Achim Flammenkamp, The Multiply Perfect Numbers Page
Luis H. Gallardo and Olivier Rahavandrainy, On (unitary) perfect polynomials over F_2 with only Mersenne primes as odd divisors, arXiv:1908.00106 [math.NT], 2019.
Florian Luca and John Ferdinands, Problem 11090: Sometimes n divides sigma_k(n), Amer. Math. Monthly 113:4 (2006), pp. 372373.
Walter Nissen, Abundancy : Some Resources
Kaitlin Rafferty and Judy Holdener, On the form of perfect and multiperfect numbers, Pi Mu Epsilon Journal, Vol. 13, No. 5 (Fall 2011), pp. 291298.
Maxie D. Schmidt, Exact Formulas for the Generalized SumofDivisors Functions, arXiv:1705.03488 [math.NT], 2017. See p. 11.
Eric Weisstein's World of Mathematics, Abundancy
Eric Weisstein's World of Mathematics, Hyperperfect Number.
Index entries for sequences where any odd perfect numbers must occur


EXAMPLE

120 is OK because divisors of 120 are {1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}, the sum of which is 360=120*3.


MATHEMATICA

Do[ If[ Mod[ DivisorSigma[1, n], n ] == 0, Print[n] ], {n, 2, 2*10^11} ]
Transpose[ Select[ Table[ {n, DivisorSigma[ 1, n ]}, {n, 100000} ], IntegerQ[ # [[ 2 ] ] ]& ] ][[ 1 ] ]


PROG

(PARI) for(n=1, 1e6, if(sigma(n)%n==0, print1(n", ")))
(Haskell)
a007691 n = a007691_list !! (n1)
a007691_list = filter ((== 1) . a017666) [1..]
 Reinhard Zumkeller, Apr 06 2012
(Python)
from sympy import divisor_sigma as sigma
def ok(n): return sigma(n, 1)%n == 0
print([n for n in range(1, 10**4) if ok(n)]) # Michael S. Branicky, Jan 06 2021


CROSSREFS

Complement is A054027. Cf. A000203, A054024, A054030, A000396, A005820, A027687, A046060, A046061, A065997, A219545.
Sequence in context: A055715 A026031 A002694 * A260508 A334410 A065997
Adjacent sequences: A007688 A007689 A007690 * A007692 A007693 A007694


KEYWORD

nonn,nice


AUTHOR

N. J. A. Sloane, Robert G. Wilson v


EXTENSIONS

More terms from Jud McCranie and then from David W. Wilson.


STATUS

approved



