The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A019294 Number (> 0) of iterations of sigma (A000203) required to reach a multiple of n when starting with n. 11
 1, 2, 4, 2, 5, 1, 5, 2, 7, 4, 15, 3, 13, 3, 2, 2, 13, 4, 12, 5, 2, 13, 16, 2, 17, 4, 9, 1, 78, 7, 10, 4, 17, 11, 6, 5, 28, 22, 4, 7, 39, 2, 16, 16, 16, 10, 32, 5, 13, 17, 9, 3, 58, 11, 19, 5, 13, 67, 97, 2, 23, 5, 16, 2, 4, 8, 101, 21, 19, 11, 50, 4, 20, 20, 23, 14, 21, 10, 36, 5, 15 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Let sigma^m(n) be result of applying sum-of-divisors function m times to n; sequence gives m(n) = min m such that n divides sigma^m(n). Perfect numbers require one iteration. It is conjectured that the sequence is finite for all n. See also the Cohen-te Riele links under A019276. a(A111227(n)) > A111227(n). - Reinhard Zumkeller, Aug 02 2012 a(659) > 870. - Michel Marcus, Jan 04 2017 REFERENCES Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 147. C. Pomerance, On the composition of the functions sigma and phi, Colloq. Math., 59 (1989), 11-15. LINKS T. D. Noe and Michel Marcus, Table of n, a(n) for n = 1..658 (first 400 terms from T. D. Noe) G. L. Cohen and H. J. J. te Riele, Iterating the sum-of-divisors function, Experimental Mathematics, 5 (1996), pp. 93-100. See Table 2 p. 95. Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers] Wikipedia, Iterated_function, as of Jan 02 2020. FORMULA Conjecture : lim_{n -> oo} log(Sum_{k=1..n} a(k))/log(n) = C = 1.6... - Benoit Cloitre, Aug 24 2002 From Michel Marcus, Jan 02 2017: (Start) a(n)=1 for n in A007691. a(n)=2 for n in A019278 unless it belongs to A007691. a(n)=3 for n in A019292 unless it belongs to A007691 or A019278. (End) EXAMPLE If n = 9 the iteration sequence is s(9) = {9, 13, 14, 24, 60, 168, 480, 1512, 4800, 15748, 28672} and Mod[s(9), 9] = {0, 4, 5, 6, 6, 6, 3, 0, 3, 7, 7}. The first iterate which is a multiple of 9 is the 7th = 1512, so a(9) = 7. For n = 67, the 101st iterate is the first, so a(67) = 101. Usually several iterates are divisible by the initial value. E.g., if n = 6, then 91 of the first 100 iterates are divisible by 6. A difficult term to compute: a(461) = 557. - Don Reble, Jun 23 2005 MAPLE A019294 := proc(n)     local a, nitr ;     a := 1 ;     nitr := numtheory[sigma](n);     while modp(nitr, n) <> 0 do         nitr := numtheory[sigma](nitr) ;         a := a+1 ;     end do:     return a; end proc: # R. J. Mathar, Aug 22 2016 MATHEMATICA f[n_, m_] := Block[{d = DivisorSigma[1, n]}, If[ Mod[d, m] == 0, 0, d]]; Table[ Length[ NestWhileList[ f[ #, n] &, n, # != 0 &]] - 1, {n, 84}] (* Robert G. Wilson v, Jun 24 2005 *) Table[Length[NestWhileList[DivisorSigma[1, #]&, DivisorSigma[1, n], !Divisible[ #, n]&]], {n, 90}] (* Harvey P. Dale, Mar 04 2015 *) PROG (PARI) a(n)=if(n<0, 0, c=1; s=n; while(sigma(s)%n>0, s=sigma(s); c++); c) (PARI) apply( A019294(n, s=n)=for(k=1, oo, (s=sigma(s))%n||return(k)), [1..99]) \\ M. F. Hasler, Jan 07 2020 (Haskell) a019294 n = snd \$ until ((== 0) . (`mod` n) . fst)                         (\(x, i) -> (a000203 x, i + 1)) (a000203 n, 1) -- Reinhard Zumkeller, Aug 02 2012 (MAGMA) a:=[]; f:=func; for n in [1..81] do k:=n; s:=1; while f(k) mod n ne 0 do k:=f(k); s:=s+1; end while; Append(~a, s); end for; a; // Marius A. Burtea, Jan 11 2020 CROSSREFS Cf. A019295 (ratio sigma^m(n)/n), A019276 (indices of records), A019277 (records), A000396. Sequence in context: A108445 A263424 A279527 * A238262 A307664 A057037 Adjacent sequences:  A019291 A019292 A019293 * A019295 A019296 A019297 KEYWORD nonn,nice AUTHOR EXTENSIONS Additional comments from Labos Elemer, Jun 20 2001 Edited by M. F. Hasler, Jan 07 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 09:03 EDT 2020. Contains 337298 sequences. (Running on oeis4.)