login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A332318 Real part of Gaussian norm-multiply-perfect numbers, in order of increasing norm. 4
1, 2, 1, 3, 6, 5, 6, 10, 2, 8, 16, 12, 21, 18, 26, 30, 13, 43, 28, 6, 52, 60, 20, 10, 72, 56, 26, 28, 85, 95, 20, 100, 58, 80, 40, 36, 108, 120, 48, 190, 144, 176, 204, 38, 106, 214, 4, 84, 232, 276, 136, 216, 300, 174, 181, 263, 216, 312, 340, 140, 464, 20, 380 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Norm-multiply-perfect numbers where defined by Spira as Gaussian integers z such that norm(sigma(z)) is divisible by norm(z), where sigma(z) is the sum of the divisors of z = a + b*i and norm(z) = z * conj(z) = a^2 + b^2.
If the ratio norm(sigma(z))/norm(z) is 2 then the number is called a norm-perfect. The norm-perfect numbers correspond to n = 1, 13, 26, ... They are 2 + i, 21 + 22*i, 56 + 64*i, ...
Only nonnegative terms are included, since if z = a + b*i is a norm-multiply-perfect number then z*i, -z and -z*i are also norm-multiply-perfect numbers and one of the four has nonnegative a and b. Terms with the same norm are ordered by their real parts.
The corresponding imaginary parts are in A332319.
The corresponding norms are 1, 5, 10, 10, 40, 50, 52, 200, 260, 260, 260, 468, ...
The corresponding ratios norm(sigma(k))/k are 1, 2, 5, 4, 5, 8, 5, 10, 9, 10, ...
LINKS
Wayne L. McDaniel, Perfect Gaussian integers, Acta Arithmetica, Vol. 2, No. 25 (1974), pp. 137-144.
Robert Spira, The Complex Sum of Divisors, The American Mathematical Monthly, Vol. 68, No. 2 (1961), pp. 120-124.
EXAMPLE
2 + i is a norm-perfect number since sigma(2 + i) = 3 + i, and (3^2 + 1^2) = 10 = 2 * 5 = 2 * (2^1 + 1^2).
1 + 3*i is a norm-multiply-perfect number since sigma(1 + 3*i) = 5 + 5*i, and (5^2 + 5^2) = 50 = 5 * 10 = 5 * (1^2 + 3^2).
MATHEMATICA
csigma[z_] := DivisorSigma[1, z, GaussianIntegers -> True]; normultPerf[z_] := Divisible[Abs[csigma[z]]^2, Abs[z]^2]; seq = {}; max = 10^2; Do[z = a + b*I; If[Abs[z] <= max && normultPerf[z], AppendTo[seq, {Abs[z]^2, z}]], {a, 1, max}, {b, 0, max}]; Re[Transpose[Sort[seq]][[2]]] (* after T. D. Noe at A102531 *)
CROSSREFS
Sequence in context: A063707 A205840 A171084 * A118287 A024930 A121966
KEYWORD
nonn
AUTHOR
Amiram Eldar, Feb 09 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 03:57 EDT 2024. Contains 371782 sequences. (Running on oeis4.)