OFFSET
1,2
COMMENTS
k(n) = 0 for odd n, k(n) = n/2 for even n.
If there are any odd multiply-perfect numbers, they are members of this sequence.
If there is no odd multiply-perfect number, then:
(1) the only odd number in this sequence is 1,
(2) corresponding sequence of numbers k(n): {0; a(n) / 2 for n > 1}.
EXAMPLE
12 is in the sequence because k(12) = (12*(12+1)/2) mod 12 = antisigma(12) mod 12 + sigma(12) mod 12; k(12) = 6 = 4 + 2 = n/2.
PROG
(Magma) [n: n in [1..320] | IsZero(n*(n+1)div 2 mod n - SumOfDivisors(n) mod n - (n*(n+1)div 2-SumOfDivisors(n)) mod n)]
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Mar 16 2014
STATUS
approved