The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175200 Numbers k such that rad(k) divides sigma(k). 8
 1, 6, 24, 28, 40, 54, 96, 120, 135, 216, 224, 234, 270, 360, 384, 486, 496, 540, 588, 600, 640, 672, 864, 891, 936, 1000, 1080, 1350, 1372, 1521, 1536, 1638, 1782, 1792, 1920, 1944, 2016, 2160, 2176, 3000, 3240, 3375, 3402, 3456, 3564, 3724, 3744, 3780, 4320 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS rad(k) is the product of the distinct primes dividing k (A007947). sigma(k) is the sum of divisors of k (A000203). The odd numbers in this sequence are rare: 1, 135, 891, 1521, 3375, 5733, 10935, 11907, 41067, 43875, ... Also numbers k such that k divides sigma(k)^tau(k). - Arkadiusz Wesolowski, Nov 09 2013 This sequence is infinite. It contains an infinite number of even elements and an infinite number of odd ones. This is due to the fact that for every odd prime p and every prime q dividing p+1, p*q^r is prime-perfect when r = -1 + the multiplicative order of q modulo p. - Emmanuel Vantieghem, Oct 13 2014 For each term, it is possible to find an exponent k such that sigma(n)^k is divisible by n. A007691 (multi-perfect numbers) is a subsequence of terms that have k=1. A263928 is the subsequence of terms that have k=2. - Michel Marcus, Nov 03 2015 Pollack and Pomerance call these numbers "prime-abundant numbers". - Amiram Eldar, Jun 02 2020 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 827. LINKS Donovan Johnson, Table of n, a(n) for n = 1..10000 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. Paul Pollack and Carl Pomerance, Prime-Perfect Numbers, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 12A, Paper A14, 2012. EXAMPLE rad(6) = 6, sigma(6) = 12 = 6*2. rad(24) = 6, sigma(24) = 60 = 6*10. rad(43875) = 195, sigma(43875) = 87360 = 195*448. MAPLE for n from 1 to 5000 do : p1:= ifactors(n) :p2 :=mul(p1[i], i=1..nops(p1)): if irem(sigma(n), p2) =0 then print (n): else fi: od : # Alternative select(n->sigma(n)^n mod n=0, [\$1..4320]); # Paolo P. Lava, Aug 07 2018 MATHEMATICA Select[Range@5000, Divisible[DivisorSigma[1, #]^#, # ]&] (* Vincenzo Librandi, Aug 07 2018 *) PROG (PARI) isok(n) = {fs = Set(factor(sigma(n))[, 1]); fn = Set(factor(n)[, 1]); fn == setintersect(fn, fs); } \\ Michel Marcus, Nov 03 2015 (MAGMA) [n: n in [1..5000] | IsZero(DivisorSigma(1, n)^n mod n)]; // Vincenzo Librandi, Aug 07 2018 CROSSREFS Cf. A027598, A069235, A105402, A173615. Sequence in context: A072710 A273124 A069235 * A293453 A118372 A263928 Adjacent sequences:  A175197 A175198 A175199 * A175201 A175202 A175203 KEYWORD nonn AUTHOR Michel Lagneau, Mar 03 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 5 20:21 EDT 2020. Contains 335473 sequences. (Running on oeis4.)