This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2017 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000541 Sum of 7th powers: 1^7 + 2^7 + ... + n^7. (Formerly M5394 N2343) 15
 0, 1, 129, 2316, 18700, 96825, 376761, 1200304, 3297456, 8080425, 18080425, 37567596, 73399404, 136147921, 241561425, 412420800, 680856256, 1091194929, 1703414961, 2597286700, 3877286700, 5678375241, 8172733129, 11577558576, 16164030000, 22267545625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) is divisible by A000537(n) if and only n is congruent to 1 mod 3 (see A016777) - Artur Jasinski, Oct 10 2007 This sequence is related to A000540 by a(n) = n*A000540(n)-sum(A000540(i), i=0..n-1). - Bruno Berselli, Apr 26 2010 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 815. L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. B. Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian). Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1). FORMULA a(n) = n^2*(n+1)^2*(3*n^4+6*n^3-n^2-4*n+2)/24. a(n) = Sqrt[Sum[Sum[(i*j)^7, {i, 1, n}], {j, 1, n}]]. - Alexander Adamchuk, Oct 26 2004 Jacobi formula: a(n) = 2(A000217(n))^4 - A000539(n). - Artur Jasinski, Oct 10 2007 G.f.: x*(1+120*x+1191*x^2+2416*x^3+1191*x^4+120*x^5+x^6)/(1-x)^9. - Colin Barker, May 25 2012 a(n) = 8*a(n-1) - 28* a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) + 5040. - Ant King, Sep 24 2013 a(n) = -sum(j=1..7, j*s(n+1,n+1-j)*S(n+7-j,n)), where s(n,k) and S(n,k) are the Stirling numbers of the first kind and the second kind, respectively. - Mircea Merca, Jan 25 2014 a(n) = 2*A000217(n)^4 - (4/3)*A000217(n)^3 + (1/3)*A000217(n)^2. - Michael Raney, Feb 19 2016 MAPLE a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^7 od: seq(a[n], n=0..25); # Zerinvary Lajos, Feb 22 2008 MATHEMATICA Table[Sum[k^7, {k, 1, n}], {n, 0, 100}] (* Artur Jasinski, Oct 10 2007 *) s = 0; lst = {s}; Do[s += n^7; AppendTo[lst, s], {n, 1, 30, 1}]; lst (* Zerinvary Lajos, Jul 12 2009 LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 1, 129, 2316, 18700, 96825, 376761, 1200304, 3297456}, 35] (* Vincenzo Librandi, Feb 20 2016 *) PROG (PARI) a(n)=n^2*(n+1)^2*(3*n^4+6*n^3-n^2-4*n+2)/24 \\ Edward Jiang, Sep 10 2014 (PARI) a(n) = sum(i=1, n, i^7); \\ Michel Marcus, Sep 11 2014 (Python) A000541_list, m = [0], [5040, -15120, 16800, -8400, 1806, -126, 1, 0, 0] for _ in range(10**2): ....for i in range(8): ........m[i+1] += m[i] ....A000541_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014 (MAGMA) [n^2*(n+1)^2*(3*n^4+6*n^3-n^2-4*n+2)/24: n in [0..30]]; // Vincenzo Librandi, Feb 20 2016 CROSSREFS Row 7 of array A103438. Cf. A000217, A000537, A000539. Sequence in context: A294302 A221969 A036085 * A023876 A301551 A297493 Adjacent sequences:  A000538 A000539 A000540 * A000542 A000543 A000544 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 21:09 EST 2018. Contains 318023 sequences. (Running on oeis4.)