

A002919


Susceptibility for hexagonal lattice.
(Formerly M4162 N1730)


0



1, 6, 24, 90, 318, 1098, 3696, 12270, 40224, 130650, 421176, 1348998, 4299018, 13635630, 43092888, 135698970, 426144654
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The hexagonal lattice is the familiar 2dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.


REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. F. Sykes, D. G. Gaunt, P. D. Roberts and J. A. Wyles, High temperature series for the susceptibility of the Ising model, I. Two dimensional lattices, J. Phys. A 5 (1972) 624639.


LINKS

Table of n, a(n) for n=0..16.
G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2


CROSSREFS

Sequence in context: A255474 A249976 A181618 * A006780 A001352 A155602
Adjacent sequences: A002916 A002917 A002918 * A002920 A002921 A002922


KEYWORD

nonn,nice


AUTHOR

N. J. A. Sloane.


STATUS

approved



