login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048395
Sum of consecutive nonsquares.
14
0, 5, 26, 75, 164, 305, 510, 791, 1160, 1629, 2210, 2915, 3756, 4745, 5894, 7215, 8720, 10421, 12330, 14459, 16820, 19425, 22286, 25415, 28824, 32525, 36530, 40851, 45500, 50489, 55830, 61535, 67616, 74085, 80954, 88235, 95940, 104081
OFFSET
0,2
COMMENTS
Relationship with natural numbers: a(4) = (first term + last term)*n = (10+15)*3 = (25)*3 = 75; a(5) = (17+24)*4 = (41)*4 = 164; ...
Also (X*Y*Z)/(X+Y+Z) of primitive Pythagorean triples (X,Y,Z=Y+1) as described in A046092 and A001844. - Lambert Herrgesell (zero815(AT)googlemail.com), Dec 13 2005
First differences are in A201279. - J. M. Bergot, Jun 22 2013 [Corrected by Omar E. Pol, Dec 26 2021]
FORMULA
a(n) = 2*n^3 + 2*n^2 + n.
a(n) = Sum_{j=0..n} ((n+j+2)^2 - j^2 + 1). - Zerinvary Lajos, Sep 13 2006
O.g.f.: x(x+5)(1+x)/(1-x)^4. - R. J. Mathar, Jun 12 2008
a(n) = A199771(2*n) for n > 0. - Reinhard Zumkeller, Nov 23 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=5, a(2)=26, a(3)=75. - Harvey P. Dale, Nov 01 2013
E.g.f.: exp(x)*x*(5 + 8*x + 2*x^2). - Stefano Spezia, Jun 25 2022
EXAMPLE
Between 3^2 and 4^2 we have 10+11+12+13+14+15 which is 75 or a(4).
MATHEMATICA
Table[n(1+2*n(1+n)), {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 5, 26, 75}, 40] (* Harvey P. Dale, Nov 01 2013 *)
PROG
(PARI) v0=[1, 0, 1]; M=[1, 2, 2; -2, -1, -2; 2, 2, 3];
g(v)=v[1]*v[2]*v[3]/(v[1]+v[2]+v[3]);
a(n)=g(v0*M^n);
for(i=0, 50, print1(a(i), ", ")) \\ Lambert Herrgesell (zero815(AT)googlemail.com), Dec 13 2005
(Haskell)
a048395 0 = 0
a048395 n = a199771 (2 * n) -- Reinhard Zumkeller, Oct 26 2015
KEYWORD
nonn,nice,easy
AUTHOR
Patrick De Geest, Mar 15 1999
STATUS
approved