|
|
A086849
|
|
Sum of first n nonsquares.
|
|
7
|
|
|
2, 5, 10, 16, 23, 31, 41, 52, 64, 77, 91, 106, 123, 141, 160, 180, 201, 223, 246, 270, 296, 323, 351, 380, 410, 441, 473, 506, 540, 575, 612, 650, 689, 729, 770, 812, 855, 899, 944, 990, 1037, 1085, 1135, 1186, 1238, 1291, 1345, 1400, 1456, 1513, 1571, 1630
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(n) = A000217(A000037(n)) - A000330(A000196(A000037(n))).
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
From Jonathan Vos Post, Aug 28 2005: (Start)
a(n) = Sum_{i=1..n} A000037(i).
a(n) = Sum_{i=1..n} (i + floor(1/2 + sqrt(i))).
a(n) = A000217(A000037(n)) -(1/3)*(2*A000196(n)+1)*A000217(A000196(A000037(n))). (End)
a(n) = floor(1/2 + (n + sqrt(n))*(n/2 + sqrt(n)/6 + 1/3) - (floor(1/2 + sqrt(n)) - sqrt(n))^2*sqrt(n)). - Graeme McRae, Aug 28 2007
a(n) = n^2/2 + 2n*sqrt(n)/3 + O(n). - Charles R Greathouse IV, Aug 28 2016
|
|
MATHEMATICA
|
Accumulate[Table[n + Round[Sqrt[n]], {n, 120}]] (* Vladimir Joseph Stephan Orlovsky, Jul 08 2011 *)
|
|
PROG
|
(Haskell)
a086849 n = a086849_list !! (n-1)
a086849_list = scanl1 (+) a000037_list
-- Reinhard Zumkeller, Oct 26 2015
(PARI) a(n)=my(k=n+(sqrtint(4*n)+1)\2, s=sqrtint(k)); k*(k+1)/2 - s*(s+1)*(2*s+1)/6 \\ Charles R Greathouse IV, Aug 28 2016
|
|
CROSSREFS
|
Cf. A000037, A000196, A000217, A000330, A048395.
Sequence in context: A062472 A135061 A323624 * A131938 A031871 A026056
Adjacent sequences: A086846 A086847 A086848 * A086850 A086851 A086852
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Reinhard Zumkeller, Aug 18 2003
|
|
STATUS
|
approved
|
|
|
|