login
A005399
E.g.f.: high-temperature series in J/2kT for ferromagnetic susceptibility for the spin-1/2 Heisenberg model on hexagonal lattice.
(Formerly M4256)
4
1, 6, 48, 408, 3600, 42336, 781728, 13646016, 90893568, -1798204416, 70794720768, 7538546211840, 63813109782528, -12977417912045568
OFFSET
0,2
COMMENTS
Previous name was: Susceptibility series for hexagonal lattice.
The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. A. Baker Jr., H. E. Gilbert, J. Eve, and G. S. Rushbrooke, On the two-dimensional, spin-1/2 Heisenberg ferromagnetic models, Phys. Lett., 25A (1967), 207-209.
N. Elstner, R. R. P. Singh and A. P. Young, Finite temperature properties of the spin-1/2 Heisenberg antiferromagnet on the triangular lattice, Phys. Rev. Lett., 71 (1993), 1629-1632.
J. Oitmaa and E. Bornilla, High-temperature-series study of the spin-1/2 Heisenberg ferromagnet, Phys. Rev. B, 53 (1996), 14228.
CROSSREFS
KEYWORD
sign,more
EXTENSIONS
New name from Andrey Zabolotskiy, Mar 03 2021
a(10)-a(12) added from Oitmaa and Bornilla by Andrey Zabolotskiy, Oct 20 2021
a(0) and a(13) using data from Elstner et al. (see Table I for the values -(-1)^n*n*a(n-1)) added by Andrey Zabolotskiy, Jun 17 2022
STATUS
approved