login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006431 Numbers that have a unique partition into a sum of four nonnegative squares. 8
0, 1, 2, 3, 5, 6, 7, 8, 11, 14, 15, 23, 24, 32, 56, 96, 128, 224, 384, 512, 896, 1536, 2048, 3584, 6144, 8192, 14336, 24576, 32768, 57344, 98304, 131072, 229376, 393216, 524288, 917504, 1572864, 2097152, 3670016, 6291456, 8388608, 14680064 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

From a(16) = 96 onwards, the terms of this sequence satisfy the third order recurrence relation a(n) = 4a(n-3). [Ant King, Aug 15 2010]

A002635(a(n)) = 1. - Reinhard Zumkeller, Jul 13 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Pierre de la Harpe, Lagrange et la variation des théorèmes, Images des Mathématiques, CNRS, 2014.

D. H. Lehmer, On the Partition of Numbers into Squares, The American Mathematical Monthly, Vol. 55, No.8, October 1948, pp. 476-481. [Ant King, Aug 15 2010]

Index entries for sequences related to sums of squares

Index to sequences with linear recurrences with constant coefficients, signature (0,0,4).

FORMULA

Consists of 7 odd numbers plus 0 and numbers of forms 2*4^k, 6*4^k, 14*4^k, k >= 0.

{n | A002635(n) = 1}.

G.f.: x^2*(36*x^13 +28*x^12 +32*x^11 +21*x^10 +17*x^9 +14*x^8 +13*x^7 +12*x^6 +5*x^5 +2*x^4 -x^3 -3*x^2 -2*x -1) / (4*x^3 -1). - Colin Barker, Apr 20 2013

MATHEMATICA

Select[Range[0, 3584], Length[PowersRepresentations[ #, 4, 2]] == 1&] (* Ant King, Aug 15 2010 *)

CoefficientList[Series[x  (36 x^13 + 28 x^12 + 32 x^11 + 21 x^10 + 17 x^9 + 14 x^8 + 13 x^7 + 12 x^6 + 5 x^5 + 2 x^4 - x^3 - 3 x^2 - 2 x - 1)/(4 x^3 - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 14 2013 *)

PROG

(PARI) {a(n)=if(n<2, 0, if(n<15, [1, 2, 3, 5, 6, 7, 8, 11, 14, 15, 23, 24, 32] [n-1], [4, 7, 12][n%3+1]*2^(n\3*2-7)))} /* Michael Somos, Apr 23 2006 */

(Haskell)

a006431 n = a006431_list !! (n-1)

a006431_list = filter ((== 1) . a002635) [0..]

-- Reinhard Zumkeller, Jul 13 2014

CROSSREFS

Cf. A002635, A180149, A245022.

Sequence in context: A191893 A016741 A191167 * A151894 A028229 A104452

Adjacent sequences:  A006428 A006429 A006430 * A006432 A006433 A006434

KEYWORD

nonn,easy,nice

AUTHOR

David M. Bloom.

EXTENSIONS

More terms from James A. Sellers, Dec 24 1999

Corrected by T. D. Noe, Jun 15 2006

Definition revised by Ant King, May 06 2010

A pari/gp script removed by Michel Marcus, Oct 15 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 24 16:46 EST 2014. Contains 249899 sequences.