This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050795 Numbers n such that n^2 - 1 is expressible as the sum of two nonzero squares in at least one way. 9
 3, 9, 17, 19, 33, 35, 51, 73, 81, 99, 105, 129, 145, 147, 161, 163, 179, 195, 201, 233, 243, 273, 289, 291, 297, 339, 361, 387, 393, 451, 465, 467, 483, 489, 513, 521, 577, 579, 585, 611, 627, 649, 675, 721, 723, 739, 777, 801, 809, 819, 849, 883, 899, 915 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Analogous solutions exist for the sum of two identical squares z^2-1 = 2.r^2 (e.g. 99^2-1 = 2.70^2). Values of 'z' are the terms in sequence A001541, values of 'r' are the terms in sequence A001542. Looking at a^2 + b^2 = c^2 - 1 modulo 4, we must have a and b even and c odd. Taking a = 2u, b = 2v and c = 2w - 1 and simplifying, we get u^2 + v^2 = w(w+1). - Franklin T. Adams-Watters, May 19 2008 If n is in this sequence, then so is n^(2^k), for all k >= 0. - Altug Alkan, Apr 13 2016 LINKS Chai Wah Wu, Table of n, a(n) for n = 1..10000 FORMULA a(n) = 2*A140612(n) + 1. - Franklin T. Adams-Watters, May 19 2008 EXAMPLE E.g. 51^2 - 1 = 10^2 + 50^2 = 22^2 + 46^2 = 34^2 + 38^2. MATHEMATICA t={}; Do[i=c=1; While[i Nothing] > 0 &] (* Michael De Vlieger, Apr 13 2016 *) CROSSREFS Cf. A050796, A050797, A001541, A001542, A001333. Cf. A140612, A002378. Sequence in context: A240094 A174180 A106676 * A050797 A103967 A032400 Adjacent sequences:  A050792 A050793 A050794 * A050796 A050797 A050798 KEYWORD nonn AUTHOR Patrick De Geest, Sep 15 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 21 17:20 EDT 2019. Contains 325198 sequences. (Running on oeis4.)