login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006962 Supersingular primes of the elliptic curve X_0 (11).
(Formerly M2115)
2
2, 19, 29, 199, 569, 809, 1289, 1439, 2539, 3319, 3559, 3919, 5519, 9419, 9539, 9929, 11279, 11549, 13229, 14489, 17239, 18149, 18959, 19319, 22279, 24359, 27529, 28789, 32999, 33029, 36559, 42899, 45259, 46219, 49529, 51169, 52999, 55259 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The primes for which A006571(p) == 0 (mod p) are called supersingular for the elliptic curve "11a3" and form sequence A006962. A prime p>2 is in A006962 if and only if A006571(p) = 0. - Michael Somos, Dec 25 2010

REFERENCES

S. Lang and H. F. Trotter, Frobenius Distribution in GL_2-Extensions. Lect Notes Math. 504, 1976, see p. 267.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=1..38.

PROG

(PARI) forprime(p=2, 2999, if(polcoeff(x * sqr(eta(x + O(x^p)) * eta(x^11 + O(x^p))), p)%p == 0, print1(p", "))) /* Michael Somos, Dec 25 2010 */

CROSSREFS

Cf. A006571.

Sequence in context: A083689 A102617 A120276 * A090819 A059697 A103058

Adjacent sequences:  A006959 A006960 A006961 * A006963 A006964 A006965

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Michael Somos, Dec 25 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 19 12:15 EDT 2014. Contains 246976 sequences.