

A006962


Supersingular primes of the elliptic curve X_0 (11).
(Formerly M2115)


2



2, 19, 29, 199, 569, 809, 1289, 1439, 2539, 3319, 3559, 3919, 5519, 9419, 9539, 9929, 11279, 11549, 13229, 14489, 17239, 18149, 18959, 19319, 22279, 24359, 27529, 28789, 32999, 33029, 36559, 42899, 45259, 46219, 49529, 51169, 52999, 55259
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The primes for which A006571(p) == 0 (mod p) are called supersingular for the elliptic curve "11a3" and form sequence A006962. A prime p>2 is in A006962 if and only if A006571(p) = 0.  Michael Somos, Dec 25 2010


REFERENCES

S. Lang and H. F. Trotter, Frobenius Distribution in GL_2Extensions. Lect Notes Math. 504, 1976, see p. 267.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=1..38.


PROG

(PARI) forprime(p=2, 2999, if(polcoeff(x * sqr(eta(x + O(x^p)) * eta(x^11 + O(x^p))), p)%p == 0, print1(p", "))) /* Michael Somos, Dec 25 2010 */


CROSSREFS

Cf. A006571.
Sequence in context: A083689 A102617 A120276 * A261312 A090819 A254897
Adjacent sequences: A006959 A006960 A006961 * A006963 A006964 A006965


KEYWORD

nonn


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from Michael Somos, Dec 25 2010


STATUS

approved



