This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006962 Supersingular primes of the elliptic curve X_0 (11). (Formerly M2115) 2
 2, 19, 29, 199, 569, 809, 1289, 1439, 2539, 3319, 3559, 3919, 5519, 9419, 9539, 9929, 11279, 11549, 13229, 14489, 17239, 18149, 18959, 19319, 22279, 24359, 27529, 28789, 32999, 33029, 36559, 42899, 45259, 46219, 49529, 51169, 52999, 55259 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The primes for which A006571(p) == 0 (mod p) are called supersingular for the elliptic curve "11a3" and form sequence A006962. A prime p>2 is in A006962 if and only if A006571(p) = 0. - Michael Somos, Dec 25 2010 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Joerg Arndt, Table of n, a(n) for n = 1..747 (first 60 terms by Seiichi Manyama) S. Lang and H. F. Trotter, Frobenius Distribution in GL_2-Extensions Lect Notes Math. 504, 1976, see p. 267. MATHEMATICA maxPi = 500; QP = QPochhammer; s = q*(QP[q]*QP[q^11])^2 + O[q]^(Prime[ maxPi] + 1); Reap[Do[If[Mod[SeriesCoefficient[s, p], p] == 0, Print[p]; Sow[p]], {p, Prime[Range[maxPi]]}]][[2, 1]] (* Jean-François Alcover, Nov 29 2015, adapted from PARI *) PROG (PARI) forprime(p=2, 2999, if(polcoeff(x * sqr(eta(x + O(x^p)) * eta(x^11 + O(x^p))), p)%p == 0, print1(p", "))) /* Michael Somos, Dec 25 2010 */ (PARI) \\ gp -s 30G < A006962.gp { N = 10^8 + 2; default(seriesprecision, N); V = Vec((eta(q) * eta(q^11))^2); forprime(p=2, N, if( V[p]%p == 0, print1(p, ", ") ) ); } \\ Joerg Arndt, Sep 10 2016 (Ruby) require 'prime' def A006962(n)   ary = []   cnt = 1   Prime.each(10 ** 7){|p|     a = Array.new(p, 0)     (0..p - 1).each{|i| a[(i * i) % p] += 1}     s = 0     (0..p - 1).each{|i|       s += a[(i * i * i - 4 * i * i + 16) % p]       break if s > p     }     if p == s       ary << p       cnt += 1       return ary if cnt > n     end   } end # Seiichi Manyama, Sep 10 2016 CROSSREFS Cf. A006571. Sequence in context: A083689 A102617 A120276 * A261312 A090819 A254897 Adjacent sequences:  A006959 A006960 A006961 * A006963 A006964 A006965 KEYWORD nonn AUTHOR EXTENSIONS a(29)-a(38) from from Michael Somos, Dec 25 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.