login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015306 Gaussian binomial coefficient [ n,5 ] for q = -3. 3
1, -182, 49777, -11662040, 2869444942, -694405675964, 168973319623174, -41041673208656120, 9974653139743515223, -2423717068608654822146, 588973263031690760850991, -143119691677080990521708240 (list; graph; refs; listen; history; text; internal format)
OFFSET

5,2

REFERENCES

J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 5..200

Index entries for linear recurrences with constant coefficients, signature (-182,16653,428220,-4046679,-10746918,14348907)

FORMULA

G.f.: x^5/((1-x)*(1+3*x)*(1-9*x)*(1+27*x)*(1-81*x)*(1+243*x)). - R. J. Mathar, Aug 03 2016

From G. C. Greubel, Sep 21 2019: (Start)

a(n) = (1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920.

E.g.f.: exp(-243*x)*(-1 +1830*exp(216*x) -44469*exp(240*x) +59049*exp(244 *x) -16470*exp(252*x) +61*exp(324*x))/1032762286080. (End)

MAPLE

seq((1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920, n=5..25); # G. C. Greubel, Sep 21 2019

MATHEMATICA

Table[QBinomial[n, 5, -3], {n, 5, 20}] (* Vincenzo Librandi, Oct 29 2012 *)

PROG

(Sage) [gaussian_binomial(n, 5, -3) for n in range(5, 17)] # Zerinvary Lajos, May 27 2009

(PARI) a(n) = (1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920 \\ G. C. Greubel, Sep 21 2019

(MAGMA) [(1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920: n in [5..25]]; // G. C. Greubel, Sep 21 2019

(GAP) List([5..25], n-> (1 -61*(-3)^(n-4) +610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) +61*(-3)^(4*n-10) -(-3)^(5*n-10))/17489920); # G. C. Greubel, Sep 21 2019

CROSSREFS

Gaussian binomial coefficients [n,5]: A015305 (q=-2), this sequence (q=-3), A015308 (q=-4), A015309 (q=-5), A015310 (q=-6), A015312 (q=-7), A015313 (q=-8), A015315 (q=-9), A015316 (q=-10), A015317 (q=-11), A015319 (q=-12), A015321 (q=-13).

Sequence in context: A035839 A048546 A225712 * A190830 A145525 A028676

Adjacent sequences:  A015303 A015304 A015305 * A015307 A015308 A015309

KEYWORD

sign,easy

AUTHOR

Olivier Gérard, Dec 11 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 12 21:10 EDT 2020. Contains 336440 sequences. (Running on oeis4.)