login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022186 Triangle of Gaussian binomial coefficients [ n,k ] for q = 22. 16
1, 1, 1, 1, 23, 1, 1, 507, 507, 1, 1, 11155, 245895, 11155, 1, 1, 245411, 119024335, 119024335, 245411, 1, 1, 5399043, 57608023551, 1267490143415, 57608023551, 5399043, 1, 1, 118778947, 27882288797727, 13496292655106471 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

REFERENCES

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.

LINKS

G. C. Greubel, Rows n=0..50 of triangle, flattened

Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.

FORMULA

T(n,k) = T(n-1,k-1) + q^k * T(n-1,k), with q=22. - G. C. Greubel, May 30 2018

MATHEMATICA

Table[QBinomial[n, k, 22], {n, 0, 10}, {k, 0, n}]//Flatten (* or *) q:= 22; T[n_, 0]:= 1; T[n_, n_]:= 1; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten  (* G. C. Greubel, May 30 2018 *)

PROG

(PARI) {q=22; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1, k-1) + q^k*T(n-1, k))))};

for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 30 2018

CROSSREFS

Sequence in context: A234788 A144445 A174729 * A015151 A040539 A040540

Adjacent sequences:  A022183 A022184 A022185 * A022187 A022188 A022189

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 24 00:12 EDT 2019. Contains 321444 sequences. (Running on oeis4.)