This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006118 Sum of Gaussian binomial coefficients [ n,k ] for q=4. (Formerly M1812) 7
 1, 2, 7, 44, 529, 12278, 565723, 51409856, 9371059621, 3387887032202, 2463333456292207, 3557380311703796564, 10339081666350180289849, 59703612489554311631068958 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..80 M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy) FORMULA a(n) = 2*a(n-1)+(4^(n-1)-1)*a(n-2), n>1. [Hitzemann and Hochstattler, Discr. Math. 310 (2010) 3551]. - R. J. Mathar, Aug 21 2013 a(n) ~ c * 4^(n^2/4), where c = EllipticTheta[3,0,1/4]/QPochhammer[1/4,1/4] = 2.189888057761... if n is even and c = EllipticTheta[2,0,1/4]/QPochhammer[1/4,1/4] = 2.182810929357... if n is odd. - Vaclav Kotesovec, Aug 21 2013 MATHEMATICA Flatten[{1, RecurrenceTable[{a[n]==2*a[n-1]+(4^(n-1)-1)*a[n-2], a[0]==1, a[1]==2}, a, {n, 1, 15}]}] (* Vaclav Kotesovec, Aug 21 2013 *) Table[Sum[QBinomial[n, k, 4], {k, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Aug 13 2016 *) PROG (MAGMA) [n le 2 select n else 2*Self(n-1)+(4^(n-2)-1)*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Aug 13 2016 CROSSREFS Sequence in context: A153522 A278295 A107354 * A083670 A270357 A108240 Adjacent sequences:  A006115 A006116 A006117 * A006119 A006120 A006121 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 21 07:23 EDT 2019. Contains 321367 sequences. (Running on oeis4.)