login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015260 Gaussian binomial coefficient [ n,2 ] for q = -9. 3
1, 73, 5986, 484210, 39226915, 3177326971, 257363962948, 20846476694116, 1688564650965445, 136773736379522605, 11078672649879436966, 897372484611991440598, 72687171253825493271271, 5887660871557577275727455, 476900530596184348447133320 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

REFERENCES

J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 2..200

Index entries for linear recurrences with constant coefficients, signature (73, 657, -729).

FORMULA

G.f.: x^2/((1-x)*(1+9*x)*(1-81*x)).

a(2) = 1, a(3) = 73, a(4) = 5986, a(n) = 73*a(n-1) + 657*a(n-2) - 729*a(n-3). - Vincenzo Librandi, Oct 27 2012

MATHEMATICA

Table[QBinomial[n, 2, -9], {n, 2, 20}] (* Vincenzo Librandi, Oct 27 2012 *)

PROG

(Sage) [gaussian_binomial(n, 2, -9) for n in xrange(2, 15)] # Zerinvary Lajos, May 27 2009

(MAGMA) I:=[1, 73, 5986]; [n le 3 select I[n] else 73*Self(n-1) + 657*Self(n-2) - 729*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 27 2012

CROSSREFS

Sequence in context: A093273 A183540 A022242 * A089788 A292013 A192765

Adjacent sequences:  A015257 A015258 A015259 * A015261 A015262 A015263

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard, Dec 11 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 21:49 EDT 2019. Contains 321352 sequences. (Running on oeis4.)