login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015258 Gaussian binomial coefficient [ n,2 ] for q = -7. 3
1, 43, 2150, 105050, 5149551, 252313293, 12363454300, 605808540100, 29684623509101, 1454546516636543, 71272779562356450, 3492366196825305150, 171125943656551078651, 8385171239086224969793, 410873390715818468708600, 20132796145070950850400200 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

REFERENCES

J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 2..200

Index entries for linear recurrences with constant coefficients, signature (43,301,-343).

FORMULA

G.f.: x^2/((1-x)*(1+7x)*(1-49x)).

a(n) = (6*(-7)^n - 7 +49^n)/2688. - R. J. Mathar, May 25 2011

a(n) = 43*a(n-1) + 301*a(n-2) - 343*a(n-3), n >= 5. - Harvey P. Dale, May 25 2011

MATHEMATICA

CoefficientList[Series[1/((1-x)(1+7x)(1-49x)), {x, 0, 20}], x] (* or *) LinearRecurrence[{43, 301, -343}, {1, 43, 2150}, 20] (* Harvey P. Dale, May 25 2011 *)

Table[QBinomial[n, 2, -7], {n, 2, 20}] (* Vincenzo Librandi, Oct 27 2012 *)

PROG

(Sage) [gaussian_binomial(n, 2, -7) for n in xrange(2, 16)] # Zerinvary Lajos, May 27 2009

(MAGMA) I:=[1, 43, 2150]; [n le 3 select I[n] else 43*Self(n-1) + 301*Self(n-2) - 343*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 27 2012

CROSSREFS

Sequence in context: A009987 A267532 A076572 * A130014 A246535 A265234

Adjacent sequences:  A015255 A015256 A015257 * A015259 A015260 A015261

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard, Dec 11 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 23 14:17 EDT 2019. Contains 321431 sequences. (Running on oeis4.)