login
A015258
Gaussian binomial coefficient [ n,2 ] for q = -7.
3
1, 43, 2150, 105050, 5149551, 252313293, 12363454300, 605808540100, 29684623509101, 1454546516636543, 71272779562356450, 3492366196825305150, 171125943656551078651, 8385171239086224969793, 410873390715818468708600, 20132796145070950850400200
OFFSET
2,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
FORMULA
G.f.: x^2/((1-x)*(1+7x)*(1-49x)).
a(n) = (6*(-7)^n - 7 +49^n)/2688. - R. J. Mathar, May 25 2011
a(n) = 43*a(n-1) + 301*a(n-2) - 343*a(n-3), n >= 5. - Harvey P. Dale, May 25 2011
MATHEMATICA
CoefficientList[Series[1/((1-x)(1+7x)(1-49x)), {x, 0, 20}], x] (* or *) LinearRecurrence[{43, 301, -343}, {1, 43, 2150}, 20] (* Harvey P. Dale, May 25 2011 *)
Table[QBinomial[n, 2, -7], {n, 2, 20}] (* Vincenzo Librandi, Oct 27 2012 *)
PROG
(Sage) [gaussian_binomial(n, 2, -7) for n in range(2, 16)] # Zerinvary Lajos, May 27 2009
(Magma) I:=[1, 43, 2150]; [n le 3 select I[n] else 43*Self(n-1) + 301*Self(n-2) - 343*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 27 2012
CROSSREFS
Sequence in context: A267532 A335207 A076572 * A130014 A246535 A265234
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved