OFFSET
2,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 2..200
Index entries for linear recurrences with constant coefficients, signature (43,301,-343).
FORMULA
G.f.: x^2/((1-x)*(1+7x)*(1-49x)).
a(n) = (6*(-7)^n - 7 +49^n)/2688. - R. J. Mathar, May 25 2011
a(n) = 43*a(n-1) + 301*a(n-2) - 343*a(n-3), n >= 5. - Harvey P. Dale, May 25 2011
MATHEMATICA
CoefficientList[Series[1/((1-x)(1+7x)(1-49x)), {x, 0, 20}], x] (* or *) LinearRecurrence[{43, 301, -343}, {1, 43, 2150}, 20] (* Harvey P. Dale, May 25 2011 *)
Table[QBinomial[n, 2, -7], {n, 2, 20}] (* Vincenzo Librandi, Oct 27 2012 *)
PROG
(Sage) [gaussian_binomial(n, 2, -7) for n in range(2, 16)] # Zerinvary Lajos, May 27 2009
(Magma) I:=[1, 43, 2150]; [n le 3 select I[n] else 43*Self(n-1) + 301*Self(n-2) - 343*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 27 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved