login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A015255
Gaussian binomial coefficient [ n,2 ] for q = -5.
3
1, 21, 546, 13546, 339171, 8476671, 211929796, 5298179796, 132454820421, 3311368882921, 82784230211046, 2069605714586046, 51740143068101671, 1293503575685289171, 32337589397218492296, 808439734905030992296
OFFSET
2,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
FORMULA
G.f.: x^2/((1-x)*(1+5*x)*(1-25*x)).
a(0)=1, a(1)=21, a(2)=546, a(n) = 21*a(n-1) + 105*a(n-2) - 125*a(n-3). - Harvey P. Dale, Jun 24 2011
MATHEMATICA
Table[QBinomial[n, 2, -5], {n, 2, 22}] (* or *) LinearRecurrence[ {21, 105, -125}, {1, 21, 546}, 21] (* Harvey P. Dale, Jun 24 2011 *)
PROG
(Sage) [gaussian_binomial(n, 2, -5) for n in range(2, 18)] # Zerinvary Lajos, May 27 2009
(Magma) I:=[1, 21, 546]; [n le 3 select I[n] else 21*Self(n-1) + 105*Self(n-2) - 125*Self(n-3): n in [1..30]] // Vincenzo Librandi, Oct 27 2012
CROSSREFS
Sequence in context: A095655 A221766 A080483 * A034789 A297635 A292062
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved