login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265234
Number of 4 X n arrays containing n copies of 0..4-1 with no equal vertical neighbors and new values introduced sequentially from 0.
2
1, 43, 2592, 184740, 14439456, 1196114464, 103142395392, 9160513923648, 832211576040960, 76971887847571968, 7223525356855099392, 686117529041422350336, 65834293657115919826944, 6371837299781950752276480
OFFSET
1,2
LINKS
Manuel Kauers and Christoph Koutschan, Table of n, a(n) for n = 1..495 (terms 1..31 from R. H. Hardin).
M. Kauers and C. Koutschan, Some D-finite and some possibly D-finite sequences in the OEIS, arXiv:2303.02793 [cs.SC], 2023.
FORMULA
From Manuel Kauers and Christoph Koutschan, Mar 01 2023: (Start)
a(n) = coefficient of x^n*y^n*z^n in (1/24)*(2*x^2 + 6*x*y + 6*x^2*y + 2*y^2 + 6*x*y^2 + 2*x^2*y^2 + 6*x*z + 6*x^2*z + 6*y*z + 24*x*y*z + 6*x^2*y*z + 6*y^2*z + 6*x*y^2*z + 2*z^2 + 6*x*z^2 + 2*x^2*z^2 + 6*y*z^2 + 6*x*y*z^2 + 2*y^2*z^2)^n.
Recurrence of order 6 and degree 6: 5*(n + 5)*(832*n^2 + 5785*n + 8460)*(n + 6)^3*a(n + 6) - 4*(n + 5)*(126464*n^5 + 2941016*n^4 + 26840735*n^3 + 119399663*n^2 + 256228730*n + 208319000)*a(n + 5) + 16*(310336*n^6 + 7680621*n^5 + 78610375*n^4 + 426421788*n^3 + 1294537774*n^2 + 2087600280*n + 1398239904)*a(n + 4) + 128*(n + 4)*(1161472*n^5 + 24822356*n^4 + 207271023*n^3 + 841828441*n^2 + 1653171497*n + 1242989235)*a(n + 3) - 768*(n + 3)*(n + 4)*(3709888*n^4 + 58438003*n^3 + 333112832*n^2 + 813878537*n + 716118600)*a(n + 2) + 9216*(n + 2)*(n + 3)*(n + 4)*(1743872*n^3 + 20496944*n^2 + 74692297*n + 84692065)*a(n + 1) - 34836480*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(832*n^2 + 7449*n + 15077)*a(n) = 0. (End)
a(n) ~ 2^(2*n - 19/2) * 3^(3*n + 7/2) / (Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Mar 08 2023
EXAMPLE
Some solutions for n=4:
0 0 1 2 0 1 0 1 0 1 0 2 0 0 1 2 0 1 1 2
3 3 0 3 2 3 3 2 2 2 3 3 3 3 3 1 3 2 3 1
2 0 1 1 1 0 2 3 1 0 1 1 2 1 0 0 1 0 0 0
1 2 2 3 3 1 0 2 0 3 2 3 3 2 2 1 3 2 3 2
CROSSREFS
Row 4 of A265232.
Sequence in context: A015258 A130014 A246535 * A357557 A015323 A145315
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 06 2015
STATUS
approved