The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003464 a(n) = (6^n - 1)/5. (Formerly M4425) 61
 0, 1, 7, 43, 259, 1555, 9331, 55987, 335923, 2015539, 12093235, 72559411, 435356467, 2612138803, 15672832819, 94036996915, 564221981491, 3385331888947, 20311991333683, 121871948002099, 731231688012595, 4387390128075571 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) = A125118(n, 5) for n>4. - Reinhard Zumkeller, Nov 21 2006 Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=6, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Feb 21 2010 Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=7, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>1, a(n-1)=(-1)^n*charpoly(A,1). - Milan Janjic, Feb 21 2010 Repunits to base 6. A repunit consisting of zero 1's (empty string) gives the empty sum, i.e., 0 (only case where leading zero is shown, for convenience). - Daniel Forgues, Jul 08 2011 3*a(n) is the total number of holes in a certain triangle fractal (start with 6 triangles, 3 holes) after n iterations. See illustration in links. - Kival Ngaokrajang, Feb 21 2015 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002. INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 375 Kival Ngaokrajang, Illustration of initial terms Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. Eric Weisstein's World of Mathematics, Repunit. Index entries for linear recurrences with constant coefficients, signature (7,-6). FORMULA Binomial transform of A003948. If preceded by 0, then binomial transform of powers of 5, A000351 (preceded by 0). - Paul Barry, Mar 28 2003 a(n) = Sum_{k=1..n} C(n, k)*5^(k-1). E.g.f.: (exp(6*x) - exp(x))/5. - Paul Barry, Mar 28 2003 G.f.: x/((1-x)*(1-6*x)). - Lambert Klasen (lambert.klasen(AT)gmx.net), Feb 06 2005 a(n) = 6*a(n-1) + 1 with a(1)=1. - Vincenzo Librandi, Nov 17 2010 a(n) = 7*a(n-1) - 6*a(n-2). - Vincenzo Librandi, Nov 08 2012 EXAMPLE a(n) in base 6.................... a(n) in base 10: 0..................................0 1..................................1 11.................................7 111................................43 1111...............................259 11111..............................1555 111111.............................9331 1111111............................55987, etc. - Philippe Deléham, Mar 12 2014 MAPLE a:=n->sum(6^(n-j), j=1..n): seq(a(n), n=1..21); # Zerinvary Lajos, Jan 04 2007 A003464:=1/(6*z-1)/(z-1); # conjectured by Simon Plouffe in his 1992 dissertation a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=5*a[n-1]+6*a[n-2]+2 od: seq(a[n], n=1..33); # Zerinvary Lajos, Dec 14 2008 MATHEMATICA (6^Range[20]-1)/5 (* Harvey P. Dale, Dec. 14, 2010 *) LinearRecurrence[{7, -6}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *) PROG (PARI) for(n=1, 10, print1((6^n-1)/5, ", ")); (Sage) [lucas_number1(n, 7, 6) for n in range(1, 22)] # Zerinvary Lajos, Apr 23 2009 (Sage) [gaussian_binomial(n, 1, 6) for n in range(1, 22)] # Zerinvary Lajos, May 28 2009 (Maxima) A003464(n):=floor((6^n-1)/5)\$  makelist(A003464(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */ (MAGMA) [n le 2 select n-1 else 7*Self(n-1) - 6*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 08 2012 CROSSREFS Sequence in context: A271197 A240366 A329018 * A022036 A277670 A015451 Adjacent sequences:  A003461 A003462 A003463 * A003465 A003466 A003467 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Reinhard Zumkeller, Nov 21 2006 G.f. corrected by Philippe Deléham, Mar 11 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 23 21:51 EST 2020. Contains 338603 sequences. (Running on oeis4.)