This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A015272 Gaussian binomial coefficient [ n,3 ] for q = -5. 2
 1, -104, 13546, -1679704, 210302171, -26279294704, 3285123767796, -410635172794704, 51329529054158421, -6416187820400919704, 802023560334345174046, -100252942972187432169704 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,2 REFERENCES J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p, 99. M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. LINKS Vincenzo Librandi, Table of n, a(n) for n = 3..200 Index entries for linear recurrences with constant coefficients, signature (-104,2730,13000,-15625). FORMULA G.f.: x^3/((1-x)*(1+5*x)*(1-25*x)*(1+125*x)). - Bruno Berselli, Oct 29 2012 a(n) = (-1 + 21*5^(2n-3) + (-1)^n*5^(n-2)*(21-5^(2n-1)))/18144. - Bruno Berselli, Oct 29 2012 MATHEMATICA Table[QBinomial[n, 3, -5], {n, 3, 20}] (* Vincenzo Librandi, Oct 28 2012 *) PROG (Sage) [gaussian_binomial(n, 3, -5) for n in xrange(3, 15)] # Zerinvary Lajos, May 27 2009 CROSSREFS Sequence in context: A164759 A206013 A187700 * A048920 A091539 A157874 Adjacent sequences:  A015269 A015270 A015271 * A015273 A015274 A015275 KEYWORD sign,easy AUTHOR Olivier Gérard, Dec 11 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.