login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015363 Gaussian binomial coefficient [ n,8 ] for q=-7. 13
1, 5044201, 29684623509101, 170628488227082949701, 984049129188697468764456303, 5672509895284807570626050787828903, 32701168672146988445875611556849499108603, 188515500954498588979354521825234382842445990403 (list; graph; refs; listen; history; text; internal format)
OFFSET

8,2

REFERENCES

J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 8..100

FORMULA

a(n) = Product_{i=1..8} ((-7)^(n-i+1)-1)/((-7)^i-1). - M. F. Hasler, Nov 03 2012

MATHEMATICA

QBinomial[Range[8, 20], 8, -7] (* Harvey P. Dale, May 09 2012 *)

Table[QBinomial[n, 8, -7], {n, 8, 19}] (* Vincenzo Librandi, Nov 03 2012 *)

PROG

(Sage) [gaussian_binomial(n, 8, -7) for n in xrange(8, 15)] # Zerinvary Lajos, May 25 2009

(MAGMA) r:=8; q:=-7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012

(PARI) A015363(n, r=8, q=-7)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012

CROSSREFS

Cf. Gaussian binomial coefficients [n,8] for q=-2..-13: A015356, A015357, A015359, A015360, A015361, A015364, A015365, A015367, A015368, A015369, A015370. - M. F. Hasler, Nov 03 2012

Sequence in context: A227155 A106785 A034607 * A234785 A206136 A186624

Adjacent sequences:  A015360 A015361 A015362 * A015364 A015365 A015366

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 15:02 EDT 2019. Contains 321330 sequences. (Running on oeis4.)