The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A015363 Gaussian binomial coefficient [ n,8 ] for q=-7. 13
 1, 5044201, 29684623509101, 170628488227082949701, 984049129188697468764456303, 5672509895284807570626050787828903, 32701168672146988445875611556849499108603, 188515500954498588979354521825234382842445990403 (list; graph; refs; listen; history; text; internal format)
 OFFSET 8,2 REFERENCES J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. LINKS Vincenzo Librandi, Table of n, a(n) for n = 8..100 FORMULA a(n) = Product_{i=1..8} ((-7)^(n-i+1)-1)/((-7)^i-1). - M. F. Hasler, Nov 03 2012 MATHEMATICA QBinomial[Range[8, 20], 8, -7] (* Harvey P. Dale, May 09 2012 *) Table[QBinomial[n, 8, -7], {n, 8, 19}] (* Vincenzo Librandi, Nov 03 2012 *) PROG (Sage) [gaussian_binomial(n, 8, -7) for n in range(8, 15)] # Zerinvary Lajos, May 25 2009 (MAGMA) r:=8; q:=-7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012 (PARI) A015363(n, r=8, q=-7)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012 CROSSREFS Cf. Gaussian binomial coefficients [n,8] for q=-2..-13: A015356, A015357, A015359, A015360, A015361, A015364, A015365, A015367, A015368, A015369, A015370. - M. F. Hasler, Nov 03 2012 Sequence in context: A227155 A106785 A034607 * A234785 A206136 A186624 Adjacent sequences:  A015360 A015361 A015362 * A015364 A015365 A015366 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 15:43 EDT 2020. Contains 336253 sequences. (Running on oeis4.)