login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015364 Gaussian binomial coefficient [ n,8 ] for q=-8. 13
1, 14913081, 254171409198201, 4255976180162154314361, 71420868399845502303592335993, 1198206769685258176958937686297856633, 20102650473193049559156865045854634505718393 (list; graph; refs; listen; history; text; internal format)
OFFSET

8,2

REFERENCES

J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 8..140

FORMULA

a(n) = Product_{i=1..8} ((-8)^(n-i+1)-1)/((-8)^i-1). - M. F. Hasler, Nov 03 2012

MATHEMATICA

Table[QBinomial[n, 8, -8], {n, 8, 15}] (* Vincenzo Librandi, Nov 03 2012 *)

PROG

(Sage) [gaussian_binomial(n, 8, -8) for n in xrange(8, 15)] # Zerinvary Lajos, May 25 2009

(MAGMA) r:=8; q:=-8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012

(PARI) A015364(n, r=8, q=-8)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012

CROSSREFS

Cf. Gaussian binomial coefficients [n,8] for q=-2..-13: A015356, A015357, A015359, A015360, A015361, A015363, A015365, A015367, A015368, A015369, A015370. - M. F. Hasler, Nov 03 2012

Sequence in context: A186067 A183661 A267361 * A081640 A227286 A125565

Adjacent sequences:  A015361 A015362 A015363 * A015365 A015366 A015367

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 26 23:02 EDT 2019. Contains 321565 sequences. (Running on oeis4.)