login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015367 Gaussian binomial coefficient [ n,8 ] for q=-10. 13
1, 90909091, 9182736463728191, 917356290091909926537191, 91744803489448201844894398447191, 9174388605059687035653977786959679347191, 917439777945737474914267633276565557306870347191 (list; graph; refs; listen; history; text; internal format)
OFFSET

8,2

REFERENCES

J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 8..100

FORMULA

a(n) = Product_{i=1..8} ((-10)^(n-i+1)-1)/((-10)^i-1). - M. F. Hasler, Nov 03 2012

MATHEMATICA

Table[QBinomial[n, 8, -10], {n, 8, 14}] (* Vincenzo Librandi, Nov 03 2012 *)

PROG

(Sage) [gaussian_binomial(n, 8, -10) for n in xrange(8, 14)] # Zerinvary Lajos, May 25 2009

(MAGMA) r:=8; q:=-10; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012

(PARI) A015367(n, r=8, q=-10)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012

CROSSREFS

Cf. Gaussian binomial coefficients [n,8] for q=-2..-13: A015356, A015357, A015359, A015360, A015361, A015363, A015364, A015365, A015368, A015369, A015370. - M. F. Hasler, Nov 03 2012

Sequence in context: A227654 A069318 A172573 * A323536 A216009 A034643

Adjacent sequences:  A015364 A015365 A015366 * A015368 A015369 A015370

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 23 10:55 EDT 2019. Contains 321424 sequences. (Running on oeis4.)