This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022231 Gaussian binomial coefficients [ n,2 ] for q = 7. 2
 1, 57, 2850, 140050, 6865251, 336416907, 16484565700, 807744680100, 39579496050501, 1939395353553757, 95030372653688550, 4656488262337620150, 228167924870691555751, 11180228318776923410607, 547831187620860507371400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 LINKS Todd Silvestri and Vincenzo Librandi, Table of n, a(n) for n = 2..200 (first 591 terms from Todd Silvestri ) FORMULA G.f.: x^2/((1-x)*(1-7*x)*(1-49*x)). a(n) = (7^(n+1)-1)*(7^(n+2)-1)/288. - Todd Silvestri, Dec 16 2014 E.g.f.: (343*exp(49*x)-56*exp(7*x)+exp(x))/288. - Robert Israel, Dec 16 2014 a(n+3) = 57*a(n+2) - 399*a(n+1) + 343*a(n). - Robert Israel, Dec 16 2014 MAPLE seq((7^(n+1)-1)*(7^(n+2)-1)/288, n=0..30); # Robert Israel, Dec 16 2014 MATHEMATICA a[n_Integer/; n>=0]:=(7^(n+1)-1)*(7^(n+2)-1)/288 (* Todd Silvestri, Dec 16 2014 *) Table[QBinomial[n, 2, 7], {n, 2, 20}] (* Vincenzo Librandi, Aug 12 2016 *) PROG (Sage) [gaussian_binomial(n, 2, 7) for n in xrange(2, 17)] # Zerinvary Lajos, May 28 2009 (PARI) Vec(1/((1-x)*(1-7*x)*(1-49*x)) + O(x^30)) \\ Michel Marcus, Dec 16 2014 (PARI) r=2; q=7; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 13 2018 (PARI) lista(nn, na=2, q=7) = qp=matpascal(nn+q, q); vector(nn, n, qp[n+na, n]); \\ Michel Marcus, Jun 13 2018 (MAGMA) r:=2; q:=7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 12 2016 CROSSREFS Sequence in context: A285238 A011812 A226848 * A239823 A012058 A122533 Adjacent sequences:  A022228 A022229 A022230 * A022232 A022233 A022234 KEYWORD nonn,easy AUTHOR EXTENSIONS Offset changed by Vincenzo Librandi, Aug 12 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 26 14:18 EDT 2019. Contains 321497 sequences. (Running on oeis4.)