login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078908
Let r+i*s be the sum, with multiplicity, of the first-quadrant Gaussian primes dividing n; sequence gives r values (with a(1) = 0).
7
0, 2, 3, 4, 3, 5, 7, 6, 6, 5, 11, 7, 5, 9, 6, 8, 5, 8, 19, 7, 10, 13, 23, 9, 6, 7, 9, 11, 7, 8, 31, 10, 14, 7, 10, 10, 7, 21, 8, 9, 9, 12, 43, 15, 9, 25, 47, 11, 14, 8, 8, 9, 9, 11, 14, 13, 22, 9, 59, 10, 11, 33, 13, 12, 8, 16, 67, 9, 26, 12, 71, 12, 11, 9, 9, 23, 18, 10, 79, 11, 12, 11
OFFSET
1,2
COMMENTS
A Gaussian integer z = x+iy is in the first quadrant if x > 0, y >= 0. Just one of the 4 associates z, -z, i*z, -i*z is in the first quadrant.
The sequence is fully additive.
EXAMPLE
5 factors into the product of the primes 1+2*i, 1-2*i, but the first-quadrant associate of 1-2*i is i*(1-2*i) = 2+i, so r+i*s = 1+2*i + 2+i = 3+3*i. Therefore a(5) = 3.
MATHEMATICA
a[n_] := Module[{f = FactorInteger[n, GaussianIntegers->True]}, p = f[[;; , 1]]; e = f[[;; , 2]]; Re[Plus @@ ((If[Abs[#] == 1, 0, #]& /@ p) * e)]]; Array[a, 100] (* Amiram Eldar, Feb 28 2020 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 11 2003
EXTENSIONS
More terms and information from Vladeta Jovovic, Jan 27 2003
STATUS
approved