login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022256
Gaussian binomial coefficients [ n,5 ] for q = 9.
1
1, 66430, 3971657053, 234844517989720, 13869447829832637406, 818990894351617238824300, 48360684318187059842589436510, 2855650645340126913932218722028600, 168623318873839155489174680568370759015
OFFSET
5,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
a(n) = Product_{i=1..5} (9^(n-i+1)-1)/(9^i-1), by definition. - Vincenzo Librandi, Aug 04 2016
MATHEMATICA
QBinomial[Range[5, 20], 5, 9] (* Harvey P. Dale, Dec 10 2014 *)
Table[QBinomial[n, 5, 9], {n, 5, 20}] (* Vincenzo Librandi, Aug 04 2016 *)
PROG
(Sage) [gaussian_binomial(n, 5, 9) for n in range(5, 16)] # Zerinvary Lajos, May 27 2009
(Magma) r:=5; q:=9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 04 2016
CROSSREFS
Sequence in context: A174757 A164129 A043591 * A237925 A374953 A251057
KEYWORD
nonn
AUTHOR
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 04 2016
STATUS
approved