login
A022257
Gaussian binomial coefficients [ n,6 ] for q = 9.
1
1, 597871, 321704819164, 171201975319325044, 90997618413507253345810, 48360684318187059842589436510, 25700898795425967456865415317747420, 13658514212390616911370927114097728660820, 7258694620170400715835032365617891585605600635
OFFSET
6,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
a(n) = Product_{i=1..6} (9^(n-i+1)-1)/(9^i-1), by definition. - Vincenzo Librandi, Aug 04 2016
MATHEMATICA
Table[QBinomial[n, 6, 9], {n, 6, 20}] (* Vincenzo Librandi, Aug 04 2016 *)
PROG
(Sage) [gaussian_binomial(n, 6, 9) for n in range(6, 15)] # Zerinvary Lajos, May 27 2009
(Magma) r:=6; q:=9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 04 2016
CROSSREFS
Sequence in context: A151435 A143910 A206598 * A237536 A209515 A106779
KEYWORD
nonn
AUTHOR
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 04 2016
STATUS
approved