%I #14 Sep 08 2022 08:44:46
%S 1,597871,321704819164,171201975319325044,90997618413507253345810,
%T 48360684318187059842589436510,25700898795425967456865415317747420,
%U 13658514212390616911370927114097728660820,7258694620170400715835032365617891585605600635
%N Gaussian binomial coefficients [ n,6 ] for q = 9.
%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
%H Vincenzo Librandi, <a href="/A022257/b022257.txt">Table of n, a(n) for n = 6..180</a>
%F a(n) = Product_{i=1..6} (9^(n-i+1)-1)/(9^i-1), by definition. - _Vincenzo Librandi_, Aug 04 2016
%t Table[QBinomial[n, 6, 9], {n, 6, 20}] (* _Vincenzo Librandi_, Aug 04 2016 *)
%o (Sage) [gaussian_binomial(n,6,9) for n in range(6,15)] # _Zerinvary Lajos_, May 27 2009
%o (Magma) r:=6; q:=9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 04 2016
%K nonn
%O 6,2
%A _N. J. A. Sloane_.
%E Offset changed by _Vincenzo Librandi_, Aug 04 2016