%I #16 Sep 08 2022 08:44:46
%S 1,66430,3971657053,234844517989720,13869447829832637406,
%T 818990894351617238824300,48360684318187059842589436510,
%U 2855650645340126913932218722028600,168623318873839155489174680568370759015
%N Gaussian binomial coefficients [ n,5 ] for q = 9.
%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
%H Vincenzo Librandi, <a href="/A022256/b022256.txt">Table of n, a(n) for n = 5..200</a>
%F a(n) = Product_{i=1..5} (9^(n-i+1)-1)/(9^i-1), by definition. - _Vincenzo Librandi_, Aug 04 2016
%t QBinomial[Range[5,20],5,9] (* _Harvey P. Dale_, Dec 10 2014 *)
%t Table[QBinomial[n, 5, 9], {n, 5, 20}] (* _Vincenzo Librandi_, Aug 04 2016 *)
%o (Sage) [gaussian_binomial(n,5,9) for n in range(5,16)] # _Zerinvary Lajos_, May 27 2009
%o (Magma) r:=5; q:=9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 04 2016
%K nonn
%O 5,2
%A _N. J. A. Sloane_.
%E Offset changed by _Vincenzo Librandi_, Aug 04 2016