|
|
A174757
|
|
x-values in the solution to x^2-53*y^2=1.
|
|
2
|
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The corresponding values of y of this Pell equation are in A174983.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..200
Index entries for linear recurrences with constant coefficients, signature (132498,-1).
|
|
FORMULA
|
a(n) = 132498*a(n-1)-a(n-2) with a(1)=1, a(2)=66249.
G.f.: x*(1-66249*x)/(1-132498*x+x^2)
|
|
MATHEMATICA
|
LinearRecurrence[{132498, -1}, {1, 66249}, 30]
|
|
PROG
|
(MAGMA) I:=[1, 66249]; [n le 2 select I[n] else 132498*Self(n-1)-Self(n-2): n in [1..20]];
|
|
CROSSREFS
|
Cf. A174983.
Sequence in context: A092376 A251333 A157620 * A164129 A043591 A022256
Adjacent sequences: A174754 A174755 A174756 * A174758 A174759 A174760
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Vincenzo Librandi, Apr 13 2010
|
|
STATUS
|
approved
|
|
|
|