login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022173 Triangle of Gaussian binomial coefficients [ n,k ] for q = 9. 16
1, 1, 1, 1, 10, 1, 1, 91, 91, 1, 1, 820, 7462, 820, 1, 1, 7381, 605242, 605242, 7381, 1, 1, 66430, 49031983, 441826660, 49031983, 66430, 1, 1, 597871, 3971657053, 322140667123, 322140667123, 3971657053 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

REFERENCES

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.

LINKS

G. C. Greubel, Rows n=0..50 of triangle, flattened

R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.

Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.

FORMULA

T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017

EXAMPLE

1 ;

1 1;

1 10 1;

1 91 91 1;

1 820 7462 820 1;

1 7381 605242 605242 7381 1;

1 66430 49031983 441826660 49031983 66430 1;

1 597871 3971657053 322140667123 322140667123 3971657053 597871 1;

1 5380840 321704819164 234844517989720 2113887057661126 234844517989720 321704819164 5380840 1 ;

MAPLE

A027877 := proc(n)

    mul(9^i-1, i=1..n) ;

end proc:

A022173 := proc(n, m)

    A027877(n)/A027877(m)/A027877(n-m) ;

end proc: # R. J. Mathar, Jul 19 2017

MATHEMATICA

a027878[n_]:=Times@@ Table[9^i - 1, {i, n}]; T[n_, m_]:=a027878[n]/( a027878[m] a027878[n-m]); Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten (* Indranil Ghosh, Jul 20 2017, after Maple code *)

Table[QBinomial[n, k, 9], {n, 0, 10}, {k, 0, n}]//Flatten (* or *) q:= 9; T[n_, 0]:= 1; T[n_, n_]:= 1; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten  (* G. C. Greubel, May 27 2018 *)

PROG

(Python)

from operator import mul

def a027878(n): return 1 if n==0 else reduce(mul, [9**i - 1 for i in xrange(1, n + 1)])

def T(n, m): return a027878(n)/(a027878(m)*a027878(n - m))

for n in xrange(11): print [T(n, m) for m in xrange(n + 1)] # Indranil Ghosh, Jul 20 2017, after Maple code

(PARI) {q=9; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1, k-1) + q^k*T(n-1, k))))};

for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 27 2018

CROSSREFS

Sequence in context: A166972 A160562 A176243 * A158117 A172378 A015124

Adjacent sequences:  A022170 A022171 A022172 * A022174 A022175 A022176

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 24 06:56 EDT 2019. Contains 321444 sequences. (Running on oeis4.)