The OEIS is supported by the many generous donors to the OEIS Foundation.



Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002386 Primes (lower end) with record gaps to the next consecutive prime: primes p(k) where p(k+1) - p(k) exceeds p(j+1) - p(j) for all j < k.
(Formerly M0858 N0327)
2, 3, 7, 23, 89, 113, 523, 887, 1129, 1327, 9551, 15683, 19609, 31397, 155921, 360653, 370261, 492113, 1349533, 1357201, 2010733, 4652353, 17051707, 20831323, 47326693, 122164747, 189695659, 191912783, 387096133, 436273009, 1294268491 (list; graph; refs; listen; history; text; internal format)



See the links by Jens Kruse Andersen et al. for very large gaps.


B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 133.

D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 6.1, Table 1.

M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 14.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


M. F. Hasler, N. J. A. Sloane, and Charles R Greathouse IV, Table of n, a(n) for n = 1..80 [Added data from Thomas R. Nicely site. - John W. Nicholson, Oct 27 2021]

R. K. Guy, Letter to N. J. A. Sloane, Aug 1986

R. K. Guy, Letter to N. J. A. Sloane, 1987

Lutz Kämmerer, A fast probabilistic component-by-component construction of exactly integrating rank-1 lattices and applications, arXiv:2012.14263 [math.NA], 2020.

Jens Kruse Andersen, The Top-20 Prime Gaps

Jens Kruse Andersen, New largest known prime gap

Jens Kruse Andersen, Maximal gaps

Alexei Kourbatov, Tables of record gaps between prime constellations, arXiv preprint arXiv:1309.4053 [math.NT], 2013.

Alexei Kourbatov, Upper bounds for prime gaps related to Firoozbakht's conjecture, arXiv:1506.03042 [math.NT], 2015; and J. Int. Seq. 18 (2015) #15.11.2.

Alexei Kourbatov and Marek Wolf, Predicting maximal gaps in sets of primes, arXiv preprint arXiv:1901.03785 [math.NT], 2019.

Thomas R. Nicely, First occurrence prime gaps [For local copy see A000101]

Thomas R. Nicely, New maximal prime gaps and first occurrences, Math. Comput. 68,227 (1999) 1311-1315.

Tomás Oliveira e Silva, Gaps between consecutive primes

D. Shanks, On maximal gaps between successive primes, Math. Comp., 18 (1964), 646-651.

Matt Visser, Verifying the Firoozbakht, Nicholson, and Farhadian conjectures up to the 81st maximal prime gap, arXiv:1904.00499 [math.NT], 2019.

Eric Weisstein's World of Mathematics, Prime Gaps

Wikipedia, Prime gap

Robert G. Wilson v, Notes (no date)

J. Young and A. Potler, First occurrence prime gaps, Math. Comp., 52 (1989), 221-224.

Index entries for primes, gaps between


a(n) = A000101(n) - A005250(n) = A008950(n-1) - 1. - M. F. Hasler, Dec 13 2007

A000720(a(n)) = A005669(n).

a(n) = A000040(A005669(n)). - M. F. Hasler, Apr 26 2014


s = {2}; gm = 1; Do[p = Prime[n]; g = Prime[n + 1] - p; If[g > gm, Print[p]; AppendTo[s, p]; gm = g], {n, 2, 1000000}]; s (* Jean-François Alcover, Mar 31 2011 *)

Module[{nn=10^7, pr, df}, pr=Prime[Range[nn]]; df=Differences[pr]; DeleteDuplicates[ Thread[{Most[pr], df}], GreaterEqual[#1[[2]], #2[[2]]]&]][[All, 1]] (* The program generates the first 26 terms of the sequence. *) (* Harvey P. Dale, Sep 24 2022 *)


(PARI) a(n)=local(p, g); if(n<2, 2*(n>0), p=a(n-1); g=nextprime(p+1)-p; while(p=nextprime(p+1), if(nextprime(p+1)-p>g, break)); p) /* Michael Somos, Feb 07 2004 */

(PARI) p=q=2; g=0; until( g<(q=nextprime(1+p=q))-p && print1(q-g=q-p, ", "), ) \\ M. F. Hasler, Dec 13 2007


Cf. A000040, A001223, A000101 (upper ends), A005250 (record gaps), A000230, A111870, A111943.

Cf. A005669, A134266, A070866.

See also A205827(n) = A000040(A214935(n)), A182514(n) = A000040(A241540(n)).

Sequence in context: A129739 A163834 A335366 * A000230 A256454 A133429

Adjacent sequences: A002383 A002384 A002385 * A002387 A002388 A002389




N. J. A. Sloane


Definition clarified by Harvey P. Dale, Sep 24 2022



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 20:26 EST 2022. Contains 358588 sequences. (Running on oeis4.)