

A000230


Smallest prime p such that there is a gap of 2n between p and next prime.
(Formerly M2685 N1075)


73



2, 3, 7, 23, 89, 139, 199, 113, 1831, 523, 887, 1129, 1669, 2477, 2971, 4297, 5591, 1327, 9551, 30593, 19333, 16141, 15683, 81463, 28229, 31907, 19609, 35617, 82073, 44293, 43331, 34061, 89689, 162143, 134513, 173359, 31397, 404597, 212701, 188029, 542603, 265621, 461717, 155921, 544279, 404851, 927869, 1100977, 360653, 604073
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

The first term corresponds to a gap of 1 = 2*(1/2) (so the offset might have been 1/2!).
p + 1 = A045881(n) starts the smallest run of 2n1 successive composites. [Lekraj Beedassy, Apr 23 2010]


REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..673 (from Nicely's website)
A. Booker, The Nth Prime Page
H. Bottomley, Prime number calculator
L. J. Lander and T. R. Parkin, On the first appearance of prime differences, Math. Comp., 21 (1967), 483488.
T. R. Nicely, List of prime gaps
Tomas Oliveira e Silva, Gaps between consecutive primes
J. Thonnard, Les nombres premiers (Primality check; Closest next prime; Factorizer)
J. Young and A. Potler, First occurrence prime gaps, Math. Comp., 52 (1989), 221224.
Index entries for primes, gaps between


FORMULA

a(n) = A000040(A038664(n)).  Lekraj Beedassy, Sep 09 2006


EXAMPLE

The following table, based on a very much larger table in the web page of Tomas Oliveira e Silva (see link) shows, for each gap g, P(g) = the smallest prime such that P(g)+g is the smallest prime number larger than P(g);
* marks a recordholder: g is a recordholder if P(g') > P(g) for all (even) g' > g, i.e., if all prime gaps are smaller than g for all primes smaller than P(g); P(g) is a recordholder if P(g') < P(g) for all (even) g' < g.
This table gives rise to many sequences: P(g) is A000230, the present sequence; P(g)* is A133430; the positions of the *'s in the P(g) column give A100180, A133430; g* is A005250; P(g*) is A002386; etc.

g P(g)

1* 2*
2* 3*
4* 7*
6* 23*
8* 89*
10 139*
12 199*
14* 113
16 1831*
18* 523
20* 887
22* 1129
24 1669
26 2477*
28 2971*
30 4297*
32 5591*
34* 1327
36* 9551*
........
The first time a gap of 4 occurs between primes is between 7 and 11, so a(2)=7 and A001632(2)=11.


MATHEMATICA

a[n_] := If[n==1, 2, (For[m = 1, Prime[m + 1]  Prime[m] != 2n2, m++ ]; Prime[m])]; Table[a[n], {n, 50}] (* Farideh Firoozbakht, Dec 17 2003 *)
Join[{2}, With[{pr = Partition[Prime[Range[86000]], 2, 1]}, Transpose[ Flatten[ Table[Select[pr, #[[2]]  #[[1]] == 2n &, 1], {n, 50}], 1]][[1]]]] (* Harvey P. Dale, Apr 20 2012 *)


PROG

(PARI) a(n)=my(p=2); forprime(q=3, , if(qp==2*n, return(p)); p=q) \\ Charles R Greathouse IV, Nov 20 2012


CROSSREFS

A001632(n) = 2n + a(n) = nextprime(a(n)).
Cf. A002386, A005250.
Cf. A100964 (least prime number that begins a prime gap of at least 2n).
Cf. A133429 (records), A133430, A100180, A226657, A229021, A229028, A229030, A229033, A229034.
Sequence in context: A129739 A163834 A002386 * A133429 A087770 A237359
Adjacent sequences: A000227 A000228 A000229 * A000231 A000232 A000233


KEYWORD

nonn,nice


AUTHOR

N. J. A. Sloane.


EXTENSIONS

a(29)a(37) from Jud McCranie, Dec 11 1999
a(38)a(49) from Robert A. Stump (bee_ess107(AT)yahoo.com), Jan 11 2002


STATUS

approved



