login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000230 a(0)=2; for n>=1, a(n) = smallest prime p such that there is a gap of exactly 2n between p and next prime, or -1 if no such prime exists.
(Formerly M2685 N1075)
100
2, 3, 7, 23, 89, 139, 199, 113, 1831, 523, 887, 1129, 1669, 2477, 2971, 4297, 5591, 1327, 9551, 30593, 19333, 16141, 15683, 81463, 28229, 31907, 19609, 35617, 82073, 44293, 43331, 34061, 89689, 162143, 134513, 173359, 31397, 404597, 212701, 188029, 542603, 265621, 461717, 155921, 544279, 404851, 927869, 1100977, 360653, 604073 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

p + 1 = A045881(n) starts the smallest run of exactly 2n-1 successive composite numbers. - Lekraj Beedassy, Apr 23 2010

Weintraub gives upper bounds on a(252), a(255), a(264), a(273), and a(327) based on a search from 1.1 * 10^16 to 1.1 * 10^16 + 1.5 * 10^9, probably performed on a 1970s microcomputer. - Charles R Greathouse IV, Aug 26 2022

REFERENCES

Sol Weintraub, A large prime gap, Mathematics of Computation Vol. 36, No. 153 (Jan 1981), p. 279.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..673 (from Nicely's website)

A. Booker, The Nth Prime Page

L. J. Lander and T. R. Parkin, On the first appearance of prime differences, Math. Comp., 21 (1967), 483-488.

Thomas R. Nicely, First occurrence prime gaps [For local copy see A000101]

Tomás Oliveira e Silva, Gaps between consecutive primes

J. Thonnard, Les nombres premiers (Primality check; Closest next prime; Factorizer)

J. Young and A. Potler, First occurrence prime gaps, Math. Comp., 52 (1989), 221-224.

Index entries for primes, gaps between

FORMULA

a(n) = A000040(A038664(n)). - Lekraj Beedassy, Sep 09 2006

EXAMPLE

The following table, based on a very much larger table in the web page of Tomás Oliveira e Silva (see link) shows, for each gap g, P(g) = the smallest prime such that P(g)+g is the smallest prime number larger than P(g);

* marks a record-holder: g is a record-holder if P(g') > P(g) for all (even) g' > g, i.e., if all prime gaps are smaller than g for all primes smaller than P(g); P(g) is a record-holder if P(g') < P(g) for all (even) g' < g.

This table gives rise to many sequences: P(g) is A000230, the present sequence; P(g)* is A133430; the positions of the *'s in the P(g) column give A100180, A133430; g* is A005250; P(g*) is A002386; etc.

   -----

   g P(g)

   -----

   1* 2*

   2* 3*

   4* 7*

   6* 23*

   8* 89*

   10 139*

   12 199*

   14* 113

   16 1831*

   18* 523

   20* 887

   22* 1129

   24 1669

   26 2477*

   28 2971*

   30 4297*

   32 5591*

   34* 1327

   36* 9551*

   ........

The first time a gap of 4 occurs between primes is between 7 and 11, so a(2)=7 and A001632(2)=11.

MATHEMATICA

Join[{2}, With[{pr = Partition[Prime[Range[86000]], 2, 1]}, Transpose[ Flatten[ Table[Select[pr, #[[2]] - #[[1]] == 2n &, 1], {n, 50}], 1]][[1]]]] (* Harvey P. Dale, Apr 20 2012 *)

PROG

(PARI) a(n)=my(p=2); forprime(q=3, , if(q-p==2*n, return(p)); p=q) \\ Charles R Greathouse IV, Nov 20 2012

(Perl) use ntheory ":all"; my($l, $i, @g)=(2, 0); forprimes { $g[($_-$l) >> 1] //= $l;  while (defined $g[$i]) { print "$i $g[$i]\n"; $i++; }  $l=$_; } 1e10; # Dana Jacobsen, Mar 29 2019

CROSSREFS

A001632(n) = 2n + a(n) = nextprime(a(n)).

Cf. A001223, A002386, A005250, A045881, A038664.

Cf. A100964 (least prime number that begins a prime gap of at least 2n).

Cf. also A133429 (records), A133430, A100180, A226657, A229021, A229028, A229030, A229033, A229034.

Sequence in context: A163834 A335366 A002386 * A256454 A133429 A087770

Adjacent sequences:  A000227 A000228 A000229 * A000231 A000232 A000233

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

a(29)-a(37) from Jud McCranie, Dec 11 1999

a(38)-a(49) from Robert A. Stump (bee_ess107(AT)yahoo.com), Jan 11 2002

"or -1 if ..." added to definition at the suggestion of Alexander Wajnberg by N. J. A. Sloane, Feb 02 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 2 23:51 EDT 2022. Contains 357230 sequences. (Running on oeis4.)