login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000230 Smallest prime p such that there is a gap of 2n between p and next prime.
(Formerly M2685 N1075)
71
2, 3, 7, 23, 89, 139, 199, 113, 1831, 523, 887, 1129, 1669, 2477, 2971, 4297, 5591, 1327, 9551, 30593, 19333, 16141, 15683, 81463, 28229, 31907, 19609, 35617, 82073, 44293, 43331, 34061, 89689, 162143, 134513, 173359, 31397, 404597, 212701, 188029, 542603, 265621, 461717, 155921, 544279, 404851, 927869, 1100977, 360653, 604073 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The first term corresponds to a gap of 1 = 2*(1/2) (so the offset might have been 1/2!).

p + 1 = A045881(n) starts the smallest run of 2n-1 successive composites. [Lekraj Beedassy, Apr 23 2010]

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

J. Young and A. Potler, First occurrence prime gaps, Math. Comp., 52 (1989), 221-224.

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..673 (from Nicely's website)

A. Booker, The Nth Prime Page

H. Bottomley, Prime number calculator

L. J. Lander and T. R. Parkin, On the first appearance of prime differences, Math. Comp., 21 (1967), 483-488.

T. R. Nicely, List of prime gaps

Tomas Oliveira e Silva, Gaps between consecutive primes

J. Thonnard, Les nombres premiers (Primality check; Closest next prime; Factorizer)

Index entries for primes, gaps between

FORMULA

a(n) = A000040(A038664(n)). - Lekraj Beedassy, Sep 09 2006

EXAMPLE

The following table, based on a very much larger table in the web page of Tomas Oliveira e Silva (see link) shows, for each gap g, P(g) = the smallest prime such that P(g)+g is the smallest prime number larger than P(g);

* marks a record-holder: g is a record-holder if P(g') > P(g) for all (even) g' > g, i.e. if all prime gaps are smaller than g for all primes smaller than P(g); P(g) is a record-holder if P(g') < P(g) for all (even) g' < g.

This table gives rise to many sequences: P(g) is A000230, the present sequence; P(g)* is A133430; the positions of the *'s in the P(g) column give A100180, A133430; g* is A005250; P(g*) is A002386; etc.

-----

g P(g)

-----

1* 2*

2* 3*

4* 7*

6* 23*

8* 89*

10 139*

12 199*

14* 113

16 1831*

18* 523

20* 887

22* 1129

24 1669

26 2477*

28 2971*

30 4297*

32 5591*

34* 1327

36* 9551*

........

The first time a gap of 4 occurs between primes is between 7 and 11, so a(2)=7 and A001632(2)=11.

MATHEMATICA

a[n_] := If[n==1, 2, (For[m = 1, Prime[m + 1] - Prime[m] != 2n-2, m++ ]; Prime[m])]; Table[a[n], {n, 50}] (* Farideh Firoozbakht, Dec 17 2003 *)

Join[{2}, With[{pr = Partition[Prime[Range[86000]], 2, 1]}, Transpose[ Flatten[ Table[Select[pr, #[[2]] - #[[1]] == 2n &, 1], {n, 50}], 1]][[1]]]] (* Harvey P. Dale, Apr 20 2012 *)

PROG

(PARI) a(n)=my(p=2); forprime(q=3, , if(q-p==2*n, return(p)); p=q) \\ Charles R Greathouse IV, Nov 20 2012

CROSSREFS

A001632(n) = 2n + a(n) = nextprime(a(n)).

Cf. A002386, A005250.

Cf. A100964 (least prime number that begins a prime gap of at least 2n).

Cf. A133429 (records), A133430, A100180, A226657, A229021, A229028, A229030, A229033, A229034.

Sequence in context: A129739 A163834 A002386 * A133429 A087770 A237359

Adjacent sequences:  A000227 A000228 A000229 * A000231 A000232 A000233

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

a(29)-a(37) from Jud McCranie, Dec 11 1999.

a(38)-a(49) from Robert A. Stump (bee_ess107(AT)yahoo.com), Jan 11 2002.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 20 06:02 EDT 2014. Contains 240779 sequences.