This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000231 Number of inequivalent Boolean functions of n variables under action of complementing group. (Formerly M2702 N1083) 6
 3, 7, 46, 4336, 134281216, 288230380379570176, 2658455991569831764110243006194384896, 452312848583266388373324160190187140390789016525312000869601987902398529536 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The next term has 152 digits. - Harvey P. Dale, Jun 21 2011 REFERENCES R. L. Ashenhurst, The application of counting techniques, Proc. ACM Nat. Mtg., Pittsburg, 1952, 293-305. M. A. Harrison, The number of transitivity sets of Boolean functions, J. Soc. Indust. Appl. Math., 11 (1963), 806-828. M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 143. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (Includes this sequence, correctly, although in the Preface on page viii 4336 is mis-typed as 4436). LINKS FORMULA a(n)=(2^(2^n)+(2^n-1)*2^(2^(n-1)))/2^n. MATHEMATICA Table[(2^(2^n)+(2^n-1)*2^(2^(n-1)))/2^n, {n, 10}] (* Harvey P. Dale, Jun 21 2011 *) PROG (PARI) a(n)=(2^(2^n-n)+(2^n-1)*2^(2^(n-1)-n)) \\ Charles R Greathouse IV, Jul 29 2016 CROSSREFS Cf. A051502. Sequence in context: A184339 A294915 A003758 * A231893 A132565 A129518 Adjacent sequences:  A000228 A000229 A000230 * A000232 A000233 A000234 KEYWORD easy,nonn,nice AUTHOR EXTENSIONS More terms from Vladeta Jovovic, Apr 20 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.