This site is supported by donations to The OEIS Foundation.

# User:Karl-Heinz Hofmann

From OeisWiki

Interested in Numbers. Especially in Mersenne Primes.

Registered user of www.mersenne.org

mail<ät>riedfarmer.de

In the end: I´m only an ordinary farmer, with an university graduation.

s |
zeta(s) Decimal Expansion |
1 / zeta(s) Decimal Expansion |
1 / zeta(s) in n steps |
1 / zeta(s) in 2^n steps |
1 / zeta(s) in 10^n steps |
---|---|---|---|---|---|

2 | A013661 | A059956 | A018805 | A342632 | A342586 |

3 | A002117 | A088453 | A071778 | A342935 | A342841 |

4 | A013662 | A215267 | A082540 | A343527 | A343193 |

5 | A013663 | A343308 | A082544 | NOGI | A343282 |

6 | A013664 | A343359 | A343978 | NOGI | A344038 |

7 | A013665 | A343367 | NOGI | NOGI | NOGI |

8 | A013666 | A342683 | NOGI | NOGI | NOGI |

9 | A013667 | A341901 | NOGI | NOGI | NOGI |

NOGI = "not of great interest"

z = x^2 + y^4 all Solutions |
z^2 = x^2 + y^4 all Solutions |
z^2 = x^2 + y^4 1 Solutions |
z^2 = x^2 + y^4 2 Solutions |
z^2 = x^2 + y^4 3 Solutions |
z^2 = x^2 + y^4 4 Solutions |
z^2 = x^2 + y^4 5 Solutions |
z^2 = x^2 + y^4 6 Solutions |
z^2 = x^2 + y^4 Collected a(1)´s of A345645, A345700, A345968, A346110, A348655, A349324 |
---|---|---|---|---|---|---|---|---|

A111925 | A271576 | A345645 | A345700 | A345968 | A346110 | A348655 | A349324 | A346115 |